DuckPGQ:
Efficient Property Graph Queries in an analytical RDBMS

Daniél ten Wolde, Tavneet Singh, Gabor Szarnyas, Peter Boncz
CWI Database Architectures group

CIDR 2023
Amsterdam

E nnnnnnnnnnnnnnnnnnnnnnnnn

Outllne

1. the whyand what of SQL/PGQ
2. competent graph database systems architecture

3. graph query processing in DuckDB

E CCCCCCCC iskunde & Informatica

Graph data management

>t

connected data

src | dst
4 7
5 I

(%)

NN (==

(2]

Q.
W N

b3

tables often represent graphs

E CCCCCCCC iskunde & Informatica

Graph data management

src | dst src | dst
1 2 4 7
| |_l l ; E 2 3 5 7
2 5
connected data tables often represent graphs

s~ important functionalities:

SELECT count(*)
FROM person
WHERE name LIKE 'E%’

pattern matching path-finding relational operators

E Centrum Wiskunde & Informatica

Storing graphs in SQL

CREATE TABLE city ([:person]
id bigint PRIMARY KEY, name: Bob

name varchar
) . :Qerson IQeI’SOI’I
' name: Chloe name: Jack
CREATE TABLE person (

follows - —
id bigint PRIMARY KEY, et .city
name: Emily name: Utrecht
name varchar,

livesin
livesIn bigint,

CONSTRAINT c FOREIGN KEY (livesIn) REFERENCES city (id)
);

CREATE TABLE follows (
plid bigint,
p2id bigint,
CONSTRAINT p1 FOREIGN KEY (p1id) REFERENCES person (id),
CONSTRAINT p2 FOREIGN KEY (p2id) REFERENCES person (id)
);

E Centrum Wiskunde & Informatica

“count the number of people Bob (in)directly follows who live in the city Utrecht”

E Centrum Wiskunde & Informatica

“count the number of people Bob (in)directly follows who live in the city Utrecht”

SQL:1999 query

WITH RECURSIVE paths(startNode, endNode, path) AS (
SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob’
UNION ALL (
WITH paths AS (TABLE paths)
SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
FROM paths JOIN follows ON paths.endNode = follows.plid
WHERE NOT EXISTS (SELECT true FROM paths previous_paths
JOIN person p2 ON p2.id = follows.p2id
WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht’

E Centrum Wiskunde & Informatica

“count the number of people Bob (in)directly follows who live in the city Utrecht”

SQL:1999 query

WITH RECURSIVE paths(startNode, endNode, path) AS (
SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob’
UNION ALL (
WITH paths AS (TABLE paths)
SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
FROM paths JOIN follows ON paths.endNode = follows.plid
WHERE NOT EXISTS (SELECT true FROM paths previous_paths
JOIN person p2 ON p2.id = follows.p2id
WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht’

E Centrum Wiskunde & Informatica

“count the number of people Bob (in)directly follows who live in the city Utrecht”

SQL:1999 query

WITH RECURSIVE paths(startNode, endNode, path) AS (
SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob’
UNION ALL (
WITH paths AS (TABLE paths)
SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
FROM paths JOIN follows ON paths.endNode = follows.plid
WHERE NOT EXISTS (SELECT true FROM paths previous_paths
JOIN person p2 ON p2.id = follows.p2id
WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht’

Graph query languages

X A
@ NebulaGraph @i N:_;E(:n:

nGQL SPARQL
Oracle Labs PGX q; TigerGraph
PGQL GSQL

@ JanusGraph

Gremlin

-Neodj

Cypher

https://en.wikipedia.org/wiki/The_Tower_of_Babel_(Bruegel)

The (sorry) State of
Graph Database Systems

Peter Boncz
CWI

+ provide pointers to related literatu. ©

E Centrum Wiskunde & Informatica

The Sorry State of Graph Database Systems

“The six blunders of graph database systems” (see keynote)

e time may be running out for native property graph database systems

O Some success in certain use cases: Data Integration, Data cleaning & Enrichment, Fraud Detection,
Recommendation, Historical Analysis, Root-Cause Analysis,...

o still a niche solution and maturity+usability problems remain

e especially if SQL/PGQ becomes a (moderate) success

o Relational systems will be able to handle their use cases

o Only Data Integration, Data cleaning & Enrichment would be left (RDF/SPARQL territory)

SQL/PGQ (Property Graph Queries)

E Centrum Wiskunde & Informatica

e Extensioninthe upcoming SQL:2023 standard, 2b released in June
e Property Graphs as views over existing tables

o edge,vertex=table, property (value) =column (value), label=table-name
e Read-only operations for property graph queries

o Path-finding + Pattern matching in Cypher-like syntax, producing a “Graph-Table” in FROM

E Centrum Wiskunde & Informatica

e Extensioninthe upcoming SQL:2023 standard, 2b released in June
e Property Graphs as views over existing tables

o edge,vertex=table, property (value) =column (value), label=table-name
e Read-only operations for property graph queries

o Path-finding + Pattern matching in Cypher-like syntax, producing a “Graph-Table” in FROM

‘ @ TigerGraph ~ Oracle Labs PGX .neo0q] LDBC I\iq

GSQL PGQL Cypher G-CORE SQL:2023

E Centrum Wiskunde & Informatica

Tabular schema SQL/PGQ graph tables

CREATE TABLE city (CREATE PROPERTY GRAPH socialNetwork
id bigint PRIMARY KEY, VERTEX TABLES (
name varchar city,

); person

CREATE TABLE person ()

EDGE TABLES (
livesIn SOURCE person DESTINATION city,
follows SOURCE person DESTINATION person

id bigint PRIMARY KEY,

name varchar,

livesIn bigint,)

CONSTRAINT c FOREIGN KEY ...)
);

CREATE TABLE Follows (|
plid bigint, livesin

p2id bigint,
CONSTRAINT p1 FOREIGN KEY ... follows
CONSTRAINT p2 FOREIGN KEY ...

E Centrum Wiskunde & Informatica

SQL/PGQ query

“count the number of people Bob (in)directly follows who live in the city Utrecht”

SELECT count(gt.id)
FROM
GRAPH_TABLE (socialNetwork,

MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
-[:1livesIn]->(c:city WHERE c.name='Utrecht")

COLUMNS (p2.id)
) gt

DuckPGQ module for DuckDB

W @* DuckDB crossed 1M/month PyPIl downloads by 2023!!
Centrum Wiskunde & Informatica

1000000

DuckDB

500000

® open-source in-process SQL OLAP DBMS

250000

e Created by Mark Raasveldt
& Hannes Muhleisen (keynote Wednesday) R I AR AR LR
e very popularin data science notebooks, but suitable for many analytics applications

e “Modern”: Vectorized execution engine, Morsel-driven parallelism, ..

e Allows extension modules:

o scalar user-defined functions (UDF), parser extensions c DuckDB Labs
o data sources (scans), table-returning functions ‘
MotherDuck

E Centrum Wiskunde & Informatica

Current DuckPGQ pipeline

SQL/PGQ graph
creation query

y

[register property graph views on }

vertex and edge tables

Y

[Database catalog]

Base tables Graph view

E Centrum Wiskunde & Informatica

Current DuckPGQ pipeline

SQL/PGQ graph

creation query SeluiFEE guey

register property graph views on
vertex and edge tables

' s D
[Database catalog]—[Translate } g SQL query
\ J
(UDF \
\ >

t follows follows
t livesin livesin

Base tables Graph view

E Centrum Wiskunde & Informatica

Path finding: Compressed Sparse Row (CSR)

e On-the-fly creation (no

vertex vertex edge edge

update handling needed) i array array index
1 1 > 2 1
2 3

e Using scalar UDFs
(parallel, very fast)

o]
Y

e Indexinthe vertex array
corresponds to the
ROWID of the vertex

©
Y
ols|w|w|lojlw]la]o|~N|oa|s

Y VY

© 00 N O 0o A OD

e \ertex array contains
offsets for the edge arrays

o Works like regular BFS, but starts from multiple nodes

e Share the memory access

Centrum Wiskunde & Informatica

Multi-Source Breadth-First Search (MS-BFS)

e Batched variant developed by Manuel Then

o Major bottleneck

o Can make use of SIMD instructions (SSE/AVX)

VLDB'14

The More the Merrier:

Efficient Multi-Source Graph Traversal

Manuel Then*
then@in.tum.de

Kien Pham'
kien.pham®@nyu.edu

Moritz Kaufmann*
kaufmanm@in.tum.de

Alfons Kemper*
kemper@in.tum.de

* Technische Universitat Miinchen

ABSTRACT

Graph analytics on social networks, Web data, and com-
munication networks has been widely used in a plethora of
applications. Many graph analytics algorithms are based on
breadth-first search (BFS) graph traversal, which is not only
time-consuming for large datasets but also involves much
redundant computation when executed multiple times from
different start vertices. In this paper, we propose Multi-
Source BFS (MS-BFS), an algorithm that is designed to

Tuan-Anh Hoang-Vuf
tuananh@nyu.edu

Huy T. Vo
huy.vo@nyu.edu

Fernando Chirigatif
fchirigati@nyu.edu

Thomas Neumann*
neumann@in.tum.de

" New York University

have influence on others and, as a consequence, are of great
importance to spread information, ¢.g., for marketing pur-
poses [20]

In a wide range of graph analytics algorithms, including
shortest path computation [13], graph centrality calcula-
tion [9, 27], and k-hop neighborhood detection [12], breadth-
first search (BFS)-based graph traversal is an elementary
building block used to system se a graph, ie.,
to visit all reachable and edges of the graph from a

Centrum Wiskunde & Informatica

Multi-Source Breadth-First Search (MS-BFS)

e Batched variant developed by Manuel Then

o Works like regular BFS, but starts from multiple nodes

e Share the memory access

o Major bottleneck

o Can make use of SIMD instructions (SSE/AVX)

VLDB'14

The More the Merrier:

Efficient Multi-Source Graph Traversal

Manuel Then* Moritz Kaufmann*
then@in.tum.de kaufmanm@in.tum.de
Kien Pham' Alfons Kemper*
kien.pham®@nyu.edu kemper@in.tum.de

* Technische Universitat Miinchen

ABSTRACT

Graph analytics on social networks, Web data, and com-
munication networks has been widely used in a plethora of
applications. Many graph analytics algorithms are based on
breadth-first search (BFS) graph traversal, which is not only
time-consuming for large datasets but also involves much
redundant computation when executed multiple times from
different start vertices. In this paper, we propose Multi-
Source BFS (MS-BFS), an algorithm that is designed to

Fernando Chirigatif ~ Tuan-Anh Hoang-Vu'

fchirigati@nyu.edu tuananh@nyu.edu
Thomas Neumann* Huy T. Vo
neumann@in.tum.de huy.vo@nyu.edu

" New York University

have influence on others and, as a consequence, are of great
importance to spread information, ¢.g., for marketing pur-
poses [20]

In a wide range of graph analytics algorithms, including
shortest path computation [13], graph centrality calcula-
tion [9, 27], and k-hop neighborhood detection [12], breadth-
first search (BFS)-based graph traversal is an elementary
building block used to systematically traverse a graph, i.e.,
to visit all reachable ve and edges of the graph from a

3D OB WN -

Initial State

B1 B2

X

X

Visit

O OB WN PP

B1 B2

X

X

Seen

Centrum Wiskunde & Informatica

Multi-Source Breadth-First Search (MS-BFS)

e Batched variant developed by Manuel Then

o Works like regular BFS, but starts from multiple nodes

e Share the memory access

o Major bottleneck

o Can make use of SIMD instructions (SSE/AVX)

VLDB'14

The More the Merrier:

Efficient Multi-Source Graph Traversal

Manuel Then* Moritz Kaufmann*
then@in.tum.de kaufmanm@in.tum.de
Kien Pham' Alfons Kemper*
kien.pham®@nyu.edu kemper@in.tum.de

* Technische Universitat Miinchen

ABSTRACT

Graph analytics on social networks, Web data, and com-

munication networks has
applications. Many gra
breadth-first scarch (BFS) graph traversal, which is not only
time-consuming for large datascts but also involves much
redundant computation when executed multiple times from
different start vertices. In this paper, we propose Multi-
Source BFS (i ‘an salgorithm: thaf: is :designed.ito:

Fernando Chirigatif ~ Tuan-Anh Hoang-Vu'

fchirigati@nyu.edu tuananh@nyu.edu
Thomas Neumann* Huy T. Vo
neumann@in.tum.de huy.vo@nyu.edu

T New York University

have influence on others and, as a consequence, are of great
importance to spread information, e.g., for marketing pur-
poses [20]

In a wide range of graph analytics algorithms, including
shortest path computation [13], graph centrality calcula-
tion [9, 27], and k-hop neighborhood detection [12], breadth-
first search (BFS)-based graph traversal is an elementary
building block used to systematically traverse a graph, i.e.,
to visit all re: nd edges of the graph from a

D OB WN P

BFS 1st level

B1 B2

P
P

Visit

D OB WN -

Bl B2

X

X | X

X| X

Seen

Centrum Wiskunde & Informatica

Multi-Source Breadth-First Search (MS-BFS)

e Batched variant developed by Manuel Then

o Works like regular BFS, but starts from multiple nodes

e Share the memory access

o Major bottleneck

o Can make use of SIMD instructions (SSE/AVX)

VLDB'14

The More the Merrier:

Efficient Multi-Source Graph Traversal

Manuel Then* Moritz Kaufmann*
then@in.tum.de kaufmanm@in.tum.de
Kien Pham' Alfons Kemper*
kien.pham®@nyu.edu kemper@in.tum.de

* Technische Universitat Miinchen

ABSTRACT

Graph analytics on social networks, Web data, and com-
munication networks has been widely used in a plethora of
applications. Many grap tis algorithms are based on
breadth-first search (BFS) graph traversal, which is not only
time-consuming for large datasets but also involves much
redundant computation when executed multiple times from
different start vertices. In this paper, we propose Multi-
an algorithm that is designed to

Fernando Chirigatif ~ Tuan-Anh Hoang-Vu'

fchirigati@nyu.edu tuananh@nyu.edu
Thomas Neumann* Huy T. Vo
neumann@in.tum.de huy.vo@nyu.edu

T New York University

have influence on others and, as a consequence, are of great
importance to spread information, e.g., for marketing pur-
poses [20]

In a wide range of graph analytics algorithms, including
shortest path computation [13], graph centrality calcula-
tion [9, 27], and k-hop neighborhood detection [12], breadth-
first search (BFS)-based graph traversal is an elementary
building block used to systematically traverse a graph, i.e.,
to visit all re: nd edges of the graph from a

D OB WN P

BFS 2nd level

B1 B2

X

X

D OB WN -

B1 B2

x

X | X[X|X

Centrum Wiskunde & Informatica

Multi-Source Breadth-First Search (MS-BFS)

e Batched variant developed by Manuel Then

o Works like regular BFS, but starts from multiple nodes

e Share the memory access

o Major bottleneck

o Can make use of SIMD instructions (SSE/AVX)

VLDB'14

The More the Merrier:

Efficient Multi-Source Graph Traversal

Manuel Then* Moritz Kaufmann*
then@in.tum.de kaufmanm@in.tum.de
Kien Pham' Alfons Kemper*
kien.pham®@nyu.edu kemper@in.tum.de

* Technische Universitat Miinchen

ABSTRACT

Graph analytics on social networks, Web data, and com-
munication networks has been widely used in a plethora of
applications. Many grap tis algorithms are based on
breadth-first search (BFS) graph traversal, which is not only
time-consuming for large datasets but also involves much
redundant computation when executed multiple times from
different start vertices. In this paper, we propose Multi-
an algorithm that is designed to

Fernando Chirigatif ~ Tuan-Anh Hoang-Vu'

fchirigati@nyu.edu tuananh@nyu.edu
Thomas Neumann* Huy T. Vol
neumann@in.tum.de huy.vo@nyu.edu

T New York University

have influence on others and, as a consequence, are of great
importance to spread information, e.g., for marketing pur-
poses [20]

In a wide range of graph analytics algorithms, including
shortest path computation [13], graph centrality calcula-
tion [9, 27], and k-hop neighborhood detection [12], breadth-

graph, ie.,

aph from a

D OB WN

BFS 2nd level

B1 B2

X

X

D OB WN -

B1 B2

X

X | X[X|X

XX |[X|X|X

Seen

Last Slide

E Centrum Wiskunde & Informatica

Conclusion

e Why should you read our DuckPGQ paper?
o Learn SQL/PGQ in less than 1 page (or become ldbcouncil.org member & read 200+ pages of spec)
o Read our 12 golden rules of competent graph systems design (just 1 page of reading)
o See how DuckDB extensibility can be leveraged for a modularimplementation of SQL/PGQ

(..and we also present some benchmark results..)

e DuckPGQ availability? Not yet.. WIP & ETA in 2023

e Many avenues for future data systems research :
o Factorized query execution, Vectorized WCOJs & their query optimization

o Path-finding and query optimization, better path-finding parallelism

