
DuckPGQ:
Efficient Property Graph Queries in an analytical RDBMS

Daniël ten Wolde, Tavneet Singh, Gabor Szarnyas, Peter Boncz
CWI Database Architectures group

CIDR 2023
Amsterdam

Outline
1. the why and what of SQL/PGQ

2. competent graph database systems architecture

3. graph query processing in DuckDB

tables often represent graphs

connected data

Graph data management
src dst

1 2
2 3
2 5
⋯ ⋯

src dst
4 7
5 7

tables often represent graphs

connected data

 🔎 important functionalities:

Graph data management

 SELECT count(*)
 FROM person
 WHERE name LIKE 'E%'

relational operators

src dst
1 2
2 3
2 5
⋯ ⋯

pattern matching path-finding

src dst
4 7
5 7

Storing graphs in SQL
CREATE TABLE city (
 id bigint PRIMARY KEY,
 name varchar
);

CREATE TABLE person (
 id bigint PRIMARY KEY,
 name varchar,
 livesIn bigint,
 CONSTRAINT c FOREIGN KEY (livesIn) REFERENCES city (id)
);

CREATE TABLE follows (
 p1id bigint,
 p2id bigint,
 CONSTRAINT p1 FOREIGN KEY (p1id) REFERENCES person (id),
 CONSTRAINT p2 FOREIGN KEY (p2id) REFERENCES person (id)
);

:person
name: Bob

:person
name: Chloe

:person
name: Jack

:person
name: Emily

:city
name: Utrecht

follows

livesIn

“count the number of people Bob (in)directly follows who live in the city Utrecht”

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht'

SQL:1999 query

“count the number of people Bob (in)directly follows who live in the city Utrecht”

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht'

SQL:1999 query

“count the number of people Bob (in)directly follows who live in the city Utrecht”

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht'

SQL:1999 query

“count the number of people Bob (in)directly follows who live in the city Utrecht”

Graph query languages

CypherGSQLPGQL

nGQL GremlinSPARQL

https://en.wikipedia.org/wiki/The_Tower_of_Babel_(Bruegel)

The (sorry) State of
Graph Database Systems

Peter Boncz
CWI

comparing graph with relational database systems..
+ provide pointers to related literature

EDBT 2022

Keynote

The Sorry State of Graph Database Systems
“The six blunders of graph database systems” (see keynote)

● time may be running out for native property graph database systems

○ Some success in certain use cases: Data Integration, Data cleaning & Enrichment, Fraud Detection,
Recommendation, Historical Analysis, Root-Cause Analysis,...

○ still a niche solution and maturity+usability problems remain

● especially if SQL/PGQ becomes a (moderate) success

○ Relational systems will be able to handle their use cases

○ Only Data Integration, Data cleaning & Enrichment would be left (RDF/SPARQL territory)

SQL/PGQ (Property Graph Queries)

SQL/PGQ
● Extension in the upcoming SQL:2023 standard, 2b released in June

● Property Graphs as views over existing tables

○ edge,vertex=table, property (value) =column (value), label=table-name

● Read-only operations for property graph queries

○ Path-finding + Pattern matching in Cypher-like syntax, producing a “Graph-Table” in FROM

`

SQL/PGQ
● Extension in the upcoming SQL:2023 standard, 2b released in June

● Property Graphs as views over existing tables

○ edge,vertex=table, property (value) =column (value), label=table-name

● Read-only operations for property graph queries

○ Path-finding + Pattern matching in Cypher-like syntax, producing a “Graph-Table” in FROM

CypherPGQLGSQL G-CORE SQL:2023

Tabular schema
CREATE PROPERTY GRAPH socialNetwork
 VERTEX TABLES (
 city,
 person
)
 EDGE TABLES (
 livesIn SOURCE person DESTINATION city,
 follows SOURCE person DESTINATION person
);

CREATE TABLE city (
 id bigint PRIMARY KEY,
 name varchar
);

CREATE TABLE person (
 id bigint PRIMARY KEY,
 name varchar,
 livesIn bigint,
 CONSTRAINT c FOREIGN KEY ...
);

CREATE TABLE follows (
 p1id bigint,
 p2id bigint,
 CONSTRAINT p1 FOREIGN KEY ...
 CONSTRAINT p2 FOREIGN KEY ...
);

SQL/PGQ graph tables

:person :city

follows

livesIn

SELECT count(gt.id)
FROM
 GRAPH_TABLE (socialNetwork,

 MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
 -[:livesIn]->(c:city WHERE c.name='Utrecht')

 COLUMNS (p2.id)
) gt

SQL/PGQ query

“count the number of people Bob (in)directly follows who live in the city Utrecht”

DuckPGQ module for DuckDB

DuckDB
● open-source in-process SQL OLAP DBMS

● Created by Mark Raasveldt

 & Hannes Mühleisen (keynote Wednesday)

● very popular in data science notebooks, but suitable for many analytics applications

● “Modern”: Vectorized execution engine, Morsel-driven parallelism, ..

● Allows extension modules:

○ scalar user-defined functions (UDF), parser extensions

○ data sources (scans), table-returning functions

SQL/PGQ graph
creation query

Current DuckPGQ pipeline

register property graph views on
vertex and edge tables

Database catalog

t_person
t_city
t_follows
t_livesIn

Base tables

person
city
follows
livesIn

Graph view

SQL/PGQ graph
creation query

SQL queryTranslate

UDFs

Current DuckPGQ pipeline

register property graph views on
vertex and edge tables

Database catalog

t_person
t_city
t_follows
t_livesIn

Base tables

person
city
follows
livesIn

Graph view

SQL/PGQ query

Path finding: Compressed Sparse Row (CSR)
● On-the-fly creation (no

update handling needed)

● Using scalar UDFs
(parallel, very fast)

● Index in the vertex array
corresponds to the
ROWID of the vertex

● Vertex array contains
offsets for the edge arrays

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (SSE/AVX)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14

1

4 3

5

2

6

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (SSE/AVX)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14

1

4 3

5

2

6

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (SSE/AVX)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14

1

4 3

5

2

6

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (SSE/AVX)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14

1

4 3

5

2

6

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (SSE/AVX)

Multi-Source Breadth-First Search (MS-BFS)

1

4 3

5

2

6

VLDB’14

Last Slide

Conclusion
● Why should you read our DuckPGQ paper?

○ Learn SQL/PGQ in less than 1 page (or become ldbcouncil.org member & read 200+ pages of spec)

○ Read our 12 golden rules of competent graph systems design (just 1 page of reading)

○ See how DuckDB extensibility can be leveraged for a modular implementation of SQL/PGQ

(..and we also present some benchmark results..)

● DuckPGQ availability? Not yet.. WIP & ETA in 2023

● Many avenues for future data systems research :

○ Factorized query execution, Vectorized WCOJs & their query optimization

○ Path-finding and query optimization, better path-finding parallelism

