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Outline
1. the why and what of SQL/PGQ

2. competent graph database systems architecture

3. graph query processing in DuckDB



tables often represent graphs
 

connected data

Graph data management
src dst

1 2
2 3
2 5
⋯ ⋯

src dst
4 7
5 7



tables often represent graphs
 

connected data

  🔎 important functionalities:

Graph data management

   SELECT count(*)
   FROM person
   WHERE name LIKE 'E%'
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Storing graphs in SQL
CREATE TABLE city (
  id bigint PRIMARY KEY,
  name varchar
);

CREATE TABLE person (
  id bigint PRIMARY KEY,
  name varchar,
  livesIn bigint,
  CONSTRAINT c FOREIGN KEY (livesIn) REFERENCES city (id)
);

CREATE TABLE follows (
  p1id bigint,
  p2id bigint,
  CONSTRAINT p1 FOREIGN KEY (p1id) REFERENCES person (id),
  CONSTRAINT p2 FOREIGN KEY (p2id) REFERENCES person (id)
);

:person
name: Bob

:person
name: Chloe

:person
name: Jack

:person
name: Emily

:city
name: Utrecht

follows

livesIn



“count the number of people Bob (in)directly follows who live in the city Utrecht”



WITH RECURSIVE paths(startNode, endNode, path) AS (
   SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
     FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
   UNION ALL (
     WITH paths AS (TABLE paths)
        SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
        FROM paths JOIN follows ON paths.endNode = follows.p1id
        WHERE NOT EXISTS (SELECT true FROM paths previous_paths
                          JOIN person p2 ON p2.id = follows.p2id
                          WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths     ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city      ON city.id = p2.livesIn AND city.name = 'Utrecht'

SQL:1999 query
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Graph query languages

CypherGSQLPGQL

nGQL GremlinSPARQL 

https://en.wikipedia.org/wiki/The_Tower_of_Babel_(Bruegel)
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The Sorry State of Graph Database Systems
“The six blunders of graph database systems” (see keynote)

● time may be running out for native property graph database systems

○ Some success in certain use cases: Data Integration, Data cleaning &  Enrichment, Fraud Detection, 
Recommendation, Historical Analysis, Root-Cause Analysis,...

○ still a niche solution and maturity+usability problems remain 

● especially if SQL/PGQ becomes a (moderate) success

○ Relational systems will be able to handle their use cases  

○ Only Data Integration, Data cleaning &  Enrichment would be left (RDF/SPARQL territory) 



SQL/PGQ (Property Graph Queries) 



SQL/PGQ
● Extension in the upcoming SQL:2023 standard, 2b released in June

● Property Graphs as views over existing tables 

○ edge,vertex=table,  property (value) =column (value), label=table-name

● Read-only operations for property graph queries

○ Path-finding + Pattern matching in Cypher-like syntax, producing a “Graph-Table” in FROM
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Tabular schema
CREATE PROPERTY GRAPH socialNetwork
  VERTEX TABLES (
    city,
    person
  )
  EDGE TABLES (
    livesIn SOURCE person DESTINATION city,
    follows SOURCE person DESTINATION person
  );

CREATE TABLE city (
  id bigint PRIMARY KEY,
  name varchar
);

CREATE TABLE person (
  id bigint PRIMARY KEY,
  name varchar,
  livesIn bigint,
  CONSTRAINT c FOREIGN KEY ...
);

CREATE TABLE follows (
  p1id bigint,
  p2id bigint,
  CONSTRAINT p1 FOREIGN KEY ...
  CONSTRAINT p2 FOREIGN KEY ...
);

SQL/PGQ graph tables

:person :city

follows

livesIn



SELECT count(gt.id)
FROM
  GRAPH_TABLE (socialNetwork, 

    MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
            -[:livesIn]->(c:city WHERE c.name='Utrecht')

    COLUMNS (p2.id)
  ) gt

SQL/PGQ query

“count the number of people Bob (in)directly follows who live in the city Utrecht”



DuckPGQ module for DuckDB



DuckDB
● open-source in-process SQL OLAP DBMS 

● Created by Mark Raasveldt 

   & Hannes Mühleisen (keynote Wednesday) 

● very popular in data science notebooks, but suitable for many analytics applications

● “Modern”: Vectorized execution engine, Morsel-driven parallelism, ..

● Allows extension modules:

○ scalar user-defined functions (UDF), parser extensions

○ data sources (scans), table-returning functions



SQL/PGQ graph 
creation query

Current DuckPGQ pipeline

register property graph views on 
vertex and edge tables

Database catalog

t_person
t_city
t_follows
t_livesIn

Base tables

person
city
follows
livesIn

Graph view



SQL/PGQ graph 
creation query

SQL queryTranslate

UDFs

Current DuckPGQ pipeline

register property graph views on 
vertex and edge tables

Database catalog

t_person
t_city
t_follows
t_livesIn

Base tables

person
city
follows
livesIn

Graph view

SQL/PGQ query



Path finding: Compressed Sparse Row (CSR)
● On-the-fly creation (no 

update handling needed)

● Using scalar UDFs 
(parallel, very fast)

● Index in the vertex array 
corresponds to the
ROWID of the vertex

● Vertex array contains 
offsets for the edge arrays



● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (SSE/AVX)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14
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Conclusion
● Why should you read our DuckPGQ paper?

○ Learn SQL/PGQ in less than 1 page (or become ldbcouncil.org member & read 200+ pages of spec)

○ Read our 12 golden rules of competent graph systems design (just 1 page of reading)

○ See how DuckDB extensibility can be leveraged for a modular implementation of SQL/PGQ

(..and we also present some benchmark results..)

● DuckPGQ availability? Not yet.. WIP & ETA in 2023 

● Many avenues for future data systems research :

○ Factorized query execution, Vectorized WCOJs & their query optimization

○ Path-finding and query optimization, better path-finding parallelism


