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Engine Specialization

“One size does not fit all”

Analytics Realtime Infra Graph Monitoring Transactional ML

e Presto o XStream e DIGraph S Geulse e MySQL e TorchArrow/PyTorch
e Spark e Scribe e ODS e RocksDB o [3

e Saber e FBETL e Logarithm o XSQL o Koski

e Cubrick



Engine Specialization

The flipside

e Very limited reusability.

Duplicates efforts and forces engineers to reinvent the wheel.

Hard to maintain and enhance.
o Where do we optimize?
Exposes inconsistencies to end-users.

Hurts our capacity to move fast and innovate.
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Through the Looking Glass &

Different, but not really...

Presto Spark XStream Scuba Cubrick Koski F3

Language Frontend Presto SQL ol UPM Scuba SQL Cubrick SQL Koski DataFrame F3 DSL
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Velox Mission

Converge, Accelerate, and Unity
execution engines across Meta and
beyond



Velox Library Overview

e A generic C++ database acceleration library.
o Generic APIs: from batch to interactive, to stream processing, to Al/ML workloads.
m Key Concepts: Modularity and Extensibility.
o C++: native code for maximum efficiency
m 10X cpp vs. java win (TPC-H Q1 and Q6 microbenchmarks).

o State-of-art

m Centralize all optimizations implemented in current engines.



Velox Library Overview (2)

e Database acceleration library vs. DBMS.

e Velox takes a fully optimized physical plan as input.
o No frontend (SQL parser or dataframe layer)
o No global optimizer.

e Though there's tons of adaptivity.

e \Velox sits on the data-path
o Everything that runs on a single server.

e No control plane.



Velox - Value Proposition
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Efficiency and Consistency and
Latency Consolidation
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Reusability
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Use Cases



Velox - Use Cases

e Analytics:

o Presto/Prestissimo - interactive
o Spark//Gluten - batch

o Saber - external analytics
e Realtime Infrastructure;

o XStream - stream processing
o FBETL/Morse - data warehouse and database ingestion

o Scribe - log messaging system
e Transactional:

o XSQL - distributed transaction processing
e Machine Learning:

o TorchArrow/PyTorch - data preprocessing
o F3-feature engineering
o XLDB/Koski - training



Engineering at Meta

Open Source Platforms Infrastructure Systems Physical Infrastructure Video Engineering & AR/VR

POSTED ON AUGUST 31,2022 TO DATA INFRASTRUCTURE, OPEN SOURCE

Introducing Velox: An open source unified
execution engine

Velox - Open Source

e Publicly announced in Oct 22!

o https://fengineering.fb.com/2022/08/31/open-source/velox/

e Available in github:

o https://github.com/facebookincubator/velox
o VLDB'22:

o “Velox: Meta’s Unified Execution Engine”

e Fast growing open source community

o +180 developers

Velox: Meta’s Unified Execution Engine
o Meta, Ahana, Intel, Voltron Data, ... -
Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka,
Krishna Pai, Wei He, Biswapesh Chattopadhyay
Meta Platforms Inc.

Total Sitkibrcade: eontriodions {pedroerp,oerling, mbasmanova,kevinwilfong,lsakka,kpai,weihe,biswapesh}@fb.com

L ABSTRACT This evolution has created a siloed data ecosystem composed of
The ad-hoc development of new specialized computation engines dozens of specialized engines that are built using different frame-

100 targeted to very specific data workloads has created a siloed data works and libraries and share little to nothing with each other,
landscape. Commonly, these engines share little to nothing with are written in different languages, and are maintained by differ-

50 each other and are hard to maintain, evolve, and optimize, and ent engineering teams. Moreover, evolving and optimizing these
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ultimately provide an inconsistent experience to data users. In or-
der to address these issues, Meta has created Velox, a novel open
source C++ database acceleration library. Velox provides reusable,
extensible, high-performance, and dialect-agnostic data processing
components for building execution engines, and enhancing data
management systems. The library heavily relies on vectorization
and adaptivity, and is designed from the ground up to support effi-

engines as hardware and use cases evolve, is cost prohibitive if
done on a per-engine basis. For example, extending every engine to
better leverage novel hardware advancements, like cache-coherent
accelerators and NVRAM, supporting features like Tensor data
types for ML workloads, and leveraging future innovations made
by the research community are impractical and invariably lead to
engines with disparate sets of optimizations and features. More
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Library Outline



Velox Library - Components Outline

e Types:

o Scalar and nested data types, including structs, maps, arrays, tensors, and more.
e Vectors:

o An “Arrow-compatible” columnar memory layout module.
e Expression Eval:

o Fully vectorized expression evaluation engine built based on Vector-encoded data.
e Functions:

o APIs for custom scalar (row-by-row and batch-by-batch) and aggregate functions.
e Operators:

o Common data processing SQL operators (OrderBy, GroupBYy, HashJoin, etc).
e 1/O:

o Pluggable file format encode/decoder, storage adapter, and network serializers.
¢ Resource Management:

o Memory pools, arenas, thread/tasks, spilling, SSD and memory caching.



Ongoing Work



Ongoing Work - Where we need help

e Continue blurring the boundaries between Analytics and ML.

e Software and hardware co-evolution.
e Further componentization of the stack.

e More collaboration with academia!
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Shared Foundations: Modernizing Meta’s Data Lakehouse

Biswapesh Chattopadhyay, Pedro Pedreira, Sameer Agarwal, Yutian "James" Sun,

Suketu Vakharia, Peng Li, Weiran Liu, Sundaram Narayanan
{biswapesh,pedroerp,sag,jamessun,suketukv,plifb,weiranliu,sunnar}@fb.com

Meta Platforms Inc.
Menlo Park, CA, USA

ABSTRACT

Data processing systems have evolved significantly over the last

of machine learning workloads has developed a new set of trends
in terms of data volume, complexity, and unusual access patterns

decade, driven by large trends in hardware and software, the ex-
ponential growth of data, and new and changing use cases. At
Meta (and elsewhere), the various data systems composing the data
lakehouse had historically evolved organically and independently,
leading to data stack fragmentation, and resulting in work duplica-
tion, subpar system performance, and inconsistent user experience.
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Meanwhile, Meta’s data stack had only evolved incrementally
over the last decade. This has resulted in a fragmented stack which
was difficult to maintain and evolve, composed of almost a dozen
SQL dialects, multiple engines targeting similar workloads (each

with their own quirks), and numerous copies of the same data in
different locatione and formate The lack of ctandardization and
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