
CAESURA: Language Models as Multi-ModalQuery Planners
Matthias Urban

Technical University of Darmstadt
Carsten Binnig

Technical University of Darmstadt & DFKI

ABSTRACT
Traditional query planners translate SQL queries into query plans
to be executed over relational data. However, it is impossible to
query other data modalities, such as images, text, or video stored in
modern data systems such as data lakes using these query planners.
In this paper, we propose Language-Model-Driven Query Planning,
a new paradigm of query planning that uses Language Models
to translate natural language queries into executable query plans.
Different from relational query planners, the resulting query plans
can contain complex operators that are able to process arbitrary
modalities. As part of this paper, we present a first GPT-4 based
prototype called CAESURA and show the general feasibility of this
idea on two datasets. Finally, we discuss several ideas to improve
the query planning capabilities of today’s Language Models.

1 INTRODUCTION
Query planning, the basic process of deriving an executable query
plan in response to a user query, has conceptually stayed essentially
the same since IBM’s System R was introduced in 1974 [14]. In
traditional DBMSs, a logical plan is first obtained from parsing
a SQL query and then optimized by improving the order of the
query’s operators. In a second step, each logical operator is mapped
to a concrete implementation to obtain a physical plan, which
is eventually executed. In the past decades, research has focused
primarily on improving the efficiency of query plans by improving
various individual aspects (e.g. the cost model [5]).

However, this traditional approach to query planning is funda-
mentally limited in two important aspects: Firstly, it only applies to
query languages such as SQL, where semantics of queries are clear
and can be easily parsed into a (at least canonical) query plan to
execute the query. Secondly, it is only possible to query structured
relational data stored in tables. Due to these limitations and several
new trends, we argue that it is finally time to re-think how query
planning is done:
Trend 1: Multi-Modal Data. In today’s industries, huge amounts
of non-relational multi-modal data (e.g. images, documents, sensor
data, ...) need to be stored and processed, which has led to solutions
that store data outside classical databases. For instance, medical
clinics need to store and analyze MRI scans and patient reports
along with structured patient metadata. Since these data modalities
cannot be stored and queried easily in today’s databases, they are
usually stored in data lakes, which, however, makes gaining insights
from these modalities hard. To gain insights from such multi-modal
data lakes, the data needs to be made accessible first, usually by
manually constructing complex data processing pipelines.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2024. 14th Annual Conference on
Innovative Data Systems Research (CIDR ’24). January 14-17, 2024, Chaminade, USA

Query: Plot the number of
paintings depicting Madonna
and Child for each century!

VisualQAPython

metadata.csv
name, year, ..., img_path
Madonna, 1889, ..., i1.png
Irises, 1480, ..., i2.png
...
Scream, 1893, ..., in.png

Join

Plot

sns.barplot(joined_table,

"century", "num_paintings")

df["century"] = df.apply(
 lambda x: int(x[:2]) + 1)

inputs = blip_processor(text="Is
Madonna and Child depicted?", imgs)

sqldf("SELECT *
FROM metadata m JOIN madonna_img i
ON m.img_path = i.img_path")

Selection

Aggregation

Output:

translate to multi-modal query plan:

Figure 1: Example illustrating how a natural language query
is automatically translated into a multi-modal query plan
containing relational operators, machine generated Python
UDFs, and a VisualQA Machine Learning model. The output
is presented as a plot, making it easy and fast to gain insights
from multi-modal data. The green boxes show code snippets
that are executed when executing the plan.

While recently several pioneering systems have been proposed to
ease the querying of multi-modal data in data lakes [3, 7, 16, 18, 19],
these systems come with significant limitations. For instance, the
queries supported by these systems are often limited in complexity
(e.g. only simple queries with a single value as answer are supported
[3], or non-relational modalities are only used as filters [7]), or they
are limited to only a very few modalities [16, 19].

An ideal data system for multi-modal data, instead, would allow
all types of queries and automatically construct the data processing
pipelines, that have previously been constructed manually. This
would allow users to formulate queries that combine information
across modalities, and let them gain insights in a few minutes, for
which they previously would have needed several days or weeks.
Trend 2: Natural Language Interfaces. SQL, with its declarative
nature, has initially been designed to be understandable by layper-
sons. In practice, however, formulating complex queries in SQL
requires profound knowledge of the language, making databases in-
accessible to domain experts and management staff. Usually, these
persons are required to interact with specifically trained data sci-
entists to obtain insights from data stored in databases, a process
that often requires many iterations.

Hence, in recent years, Natural Language Interfaces for databases
have emerged, which would allow laypersons to query databases
using natural language. However, existing approaches typically
translate natural language into SQL [28, 29] and are therefore lim-
ited to relational data. Another direction are question-answering
systems which work on modalities beyond tables [3]. However,
question-answering systems only support queries that are much
less expressive than what can be done with SQL.

CIDR’24, January 14-17, 2024, Chaminade, USA Matthias Urban and Carsten Binnig

⏳

Discovery
Phase:

Planning Phase:

Relevant:
metadata.year

paintings.image

Multi-Phase Prompting

Mapping Phase:

Query: Plot the number of
paintings depicting Madonna
and Child for each century!

metadata.csv

name, year, ..., img_path
Madonna, 1889, ..., i1.png
...

VisualQA ☑

Python ☑

 Selection ⏳

Extract the century
from the metadata

Extract if Madonna and
Child are depicted in
the paintings

Select only paintings
depicting Madonna and
Child

...

 paintings
❓

...

❓

Execution

VisualQA ☑

Is Madonna and
Child depicted?

yes
no
no

madonna_
depicted

Prompt:
You are CAESURA ...

Execute: Select only paintings
depicting Madonna and Child

Selection:
 p.madonna_depicted = "yes"

Selection ⏳

Logical
Plan

Physical
Plan

Observation

...
Observation: New column

madonna_depicted has been
added. Example values: ['yes',

'no', 'no']

Interleaved execution

decided
one-by-one

Figure 2: CAESURA transforms the query into a multi-modal query-plan using a series of prompts. In the Discovery Phase, the
LLM is prompted to identify data items relevant for the query, such as relevant columns and datasets. In the Planning Phase,
the LLM is prompted to construct a sequence of steps to satisfy the user request (Logical Plan). The final Mapping Phase is
interleaved with Execution: a physical operator is chosen for each of the logical steps and executed incrementally. Once an
operator is executed, we feed the results of the previous operator back to the LLM to choose the next operator (right). That
allows the LLM to take the output of previous executions into account when choosing the physical operator and operator
arguments (e.g. selection conditions as depicted in the figure) which avoids that faulty plans are generated.

Our Vision. In this paper, we thus present a vision of a data sys-
tem that can be used by laypersons using natural language and
can query arbitrary data modalities while enabling complex user
queries way beyond classical SQL as shown in Figure 1. In the
example, a user queries a data lake of a museum that stores both
metadata (stored as a table) and pictures of artworks (stored as
images) exhibited in the museum. To support such queries on multi-
modal data, the natural language query must be translated into a
complex processing pipeline that contains processing steps that can
deal with multi-modal data. For instance, in Figure 1, the query is
translated into a query plan that contains a Python operator that can
run arbitrary Python code, and a VisualQA operator that extracts
structured information from images. In particular, in the example,
the Python operator extracts the century from a metadata column
that stores the inception dates as strings and the VisualQA operator
is used to select all pictures that depict Madonna and Child. An
important aspect is that the result for user queries in our system
can range from single values, over tables, to even a plot. Tradi-
tional query planners are clearly not able to come up with such a
multi-modal query plan from a natural language query, since doing
so requires non-trivial reasoning over the user’s intents, the
available multi-modal data, as well as the effects of applying
non-relational operators to the data.

2 LANGUAGE MODELS AS QUERY PLANNERS
In order to enable our vision, we propose CAESURA1, a novel query
planner that leverages Large Language Models (LLMs) for com-
piling complex natural language queries over multi-modal data in
executable plans. Recently, LLMs such as GPT-4 [11], LLaMA [17],
and PaLM [4], have shown impressive results on various Natural
Language Processing tasks such as translation, question answer-
ing, and reading comprehension. Most important in our context,
they have also shown to possess impressive reasoning capabilities
[2, 6, 20, 22, 27, 31, 34]. In fact, it has already been shown that
LLMs can reason not only about the content of multi-modal data
1https://github.com/DataManagementLab/caesura

[10, 33, 33] but also about the effect of applying certain tools on
the data sources [13, 15, 25, 25, 32], which enables e.g. a chatbot
that can analyze an image that the user uploads [24]. However, to
the best of our knowledge, no system has been proposed yet that
operationalizes the reasoning capabilities of LLMs to construct com-
plex query plans for multi-modal data lakes from natural language
queries.

2.1 Multi-phase Query Planning
While LLMs provide reasoning capabilities as discussed before, it is
still non-trivial to build a query planner that maps natural language
user intents to executable query plans. As shown in Figure 2, in
CAESURA we make use of a new multi-phase compilation strategy,
which leverages carefully designed prompts that contain all the
necessary information about (1) the multi-modal data sources, (2)
the available operators and (3) the query, which allows the LLM
to come up with a query plan. A major benefit of using prompts
for query planning is that it is easy to plug in new operators (e.g.
to process more modalities), as long as we provide all necessary
information about their behavior in the prompt. Moreover, our
query planner based on LLMs is composed ofmultiple phases which
are based on the intuition of the phases of traditional query plan-
ning: first, by using a first prompt, the query planner maps the
user query to a logical plan, containing a high-level step-by-step
(textual) description of what needs to be done. Afterwards, using
a separate prompt, each step is mapped to a concrete operator to
obtain a physical plan that can be executed. As we will see in our
experiments, CAESURA is thus indeed able to "reason" over user
queries, data and available operators and can thus translate user
queries into correct multi-modal query plans.

2.2 Challenges
Despite the capabilities of LLMs, there are many challenges when
using LLMs for query planning. In the following, we discuss some
of the main open research challenges for which we propose some
ideas on how to tackle them in the following sections.

https://github.com/DataManagementLab/caesura

CAESURA: Language Models as Multi-Modal Query Planners CIDR’24, January 14-17, 2024, Chaminade, USA

Plan Executability. There are many causes why LLM-generated
query plans might not be executable. For instance, the LLM might
provide the wrong inputs to an operator (e.g. a collection of im-
ages as input for a traditional SQL selection). In these cases, plan
execution will “crash” before the desired result can be computed.
One option to fix a non-executable plan (which is integrated into
CAESURA) is to use the LLM itself to fix the error by providing alter-
native plans as we discuss in Section 3.2. While we show that LLMs
are thus often able to fix errors this way, this is by far not enough
to guarantee that query plans are executable as expected by users.
Plan Correctness. Even if a query plan produced by an LLM is
executable, there might still be “logical flaws” in the plan, which
can lead to wrong query results. For instance, important steps (e.g.,
a join) might be missing. This is especially challenging since there
is no feedback from the LLM on whether an executed plan is correct
or not. One option is to let users inspect the final plan and let them
decide whether they trust it or whether they would like to improve
it. However, judging the correctness of such query plans can be
difficult for laypersons. Another idea is to improve the reasoning
capabilities of LLMs by fine-tuning them to avoid typical reasoning
errors. See Section 5 for a discussion on this direction.
Plan Optimization. Finally, another important issue is that the
plan generated by an LLM is not optimized, which is a problem since
running non-optimized plans can result in huge runtime overheads.
However, optimizing multi-modal query plans requires reasoning
over the runtime of complex multi-modal operators, such as Visu-
alQA or Python, which is non-trivial. One important component for
optimizing multi-modal plans would be a learned cost model that
captures the behavior of the multi-modal operators. We discuss
some further ideas on query optimization for LLM-based query
planning in Section 5.

3 OVERVIEW OF CAESURA
In essence, as discussed before, in CAESURA we orientate ourselves
on the phases of traditional query planning and first generate a logi-
cal plan, which is afterwards translated to a physical plan. However,
in contrast to logical plans in databases, logical plans of CAESURA
consist of a description (in natural language) of the individual steps.
An example of such a logical plan is shown in Figure 2 (below "Plan-
ning Phase"). Moreover, the physical plan contains operators that
are very different from executable plans in databases. An example
physical plan is shown in the same Figure (below "Mapping Phase").

3.1 Phases of Query Planning
Splitting the process of query planning into several phases allows
us to tailor the prompts for query planning to the specific decisions
of each phase. See Figure 2 for an overview of the three phases,
which we elaborate in more detail in the following. In a nutshell, we
first identify the relevant data sources, then in the planning phase
we let the LLM generate the logical plan, and finally, in the mapping
phase we let the LLM select the operators to obtain a physical plan.
Discovery Phase. In the first phase, we decide which data sources
(e.g., in a data lake) provide relevant information for the current
query. We only briefly describe this phase, because the focus of this
paper is on query planning. In essence, CAESURA first narrows down
the relevant tables, image collections, etc. using dense retrieval

Mapping Phase PromptPlanning Phase Prompt

System: You are CAESURA and you generate
plans to retrieve data from databases:

The database contains the following tables:
 - paintings_metadata = table(num_rows=...)
 - painting_images = table(num_rows=7912,
columns=['img_path': 'str', 'image': 'IMAGE'],
...
You have the following capabilities:
You are able to look at images (columns of
type IMAGE). For example, you are able to do
things like:
 - Recognize the objects depicted in images....

Use the following format:
Request: The user request you must satisfy by
using your capabilities
Thought: You should always think what to do.
Step 1: Description of the step.
Input: List of tables passed as input.
Output: Name of the output table.
New Columns: The new columns that have
been added to the dataset.
... (this can repeat N times)
Step N: Plan completed.

Human: My request is: Plot the number of
paintings depicting Madonna and Child
for each century! These columns are
potentially relevant:
- The 'inception' column of the
'paintings_metadata' table might be relevant.
These are some relevant values for the
column: ...

System: You are CAESURA, and you map
steps in an informal query plan to concrete
operators:

The database contains the following
tables:
 - paintings_metadata = table(
num_rows=7912, columns=['title': 'str', ..],
description='...', foreign_keys=[....])
....
You can use the following operators:
Image Select: It is useful for when you
want to select tuples based on what is
depicted in images...
...

Use the following output format:
Step <i>: What to do in this step?
Reasoning: Reason about which operator
should be used for this step. Take
datatypes into account.
Operator: The operator to use, should be
one of [Image Select, Visual Question
Answering, ...]
Arguments: The arguments to call the
operator, separated by ';'. Should be
(arg_1; ...; arg_n)

Human: Map the steps one by one.
These columns are relevant: ...
Step 1: Extract the century from the
dates in the 'inception column' of the
'paintings_metadata' table. The input
to this step is the
'paintings_metadata' table.

Figure 3: Example prompts for the Planning and Mapping
Phase. Each prompt consists of two messages and con-
tains all relevant information, e.g. data descriptions, oper-
ator/capability descriptions, etc. as well as an instruction
telling the LLM what to do. In the planning phase, we ad-
ditionally utilize in-context learning and provide a few ex-
ample translations from query to logical plan for different
domains at the very beginning of the prompt (not depicted).

(similar to Symphony [3]). Afterwards, for tabular data sources, we
prompt the LLM to decide which columns of the retrieved data are
relevant to the user query. The identified relevant data items are
used to construct prompts for the next phases, e.g., to present the
LLM with some relevant example values that help it to generate
correct selection conditions.
Planning Phase. In the planning phase, which is at the core of
CAESURA, the LLM is prompted to come up with a logical query plan
that contains a natural language description of all steps necessary to
satisfy the user’s request. Figure 3 (left) shows an example prompt
for this. The prompt consists of several parts: (1) a description of
the data, (2) the capabilities of CAESURA, (3) an output format de-
scription, and (4) finally the user query and an instruction telling
the model to come up with a plan. Notice how the multi-modal data
is presented to the LLM: it is modeled as a special two-columned
table where one column has the special datatype IMAGE. The ca-
pabilities of CAESURA describe the logical actions that CAESURA can
take with the help of the available operators as can be seen in the
example. Using this prompt, the LLM generates a stepwise (textual)
plan which describes the logical plan in the output format specified
in the input prompt. The generated stepwise plan is then parsed
by CAESURA into a logical plan. Moreover, in order to improve the

CIDR’24, January 14-17, 2024, Chaminade, USA Matthias Urban and Carsten Binnig

quality of plans, we add a few examples of correct logical plans
using few-shot prompting (not shown in the prompt in Figure 3).
This helps to instruct the model to produce plans in the desired
output format.
Mapping and Interleaved Execution. In the last phase, each
previously determined logical step is mapped to a physical operator
(and its input arguments) using a prompt similar to the one in Figure
3 (right). The prompt for this phase contains a short summary of the
operators and what they can be used for, which is inspired by recent
work where LLM agents can use external tools [24]. Moreover,
different from traditional query planning, we do not decide on
all the physical operators for all logical steps at once. Instead, we
incrementally decide for each step and then execute it directly.
For example, as shown in Figure 2, we first execute the VisualQA
operator before we decide to use a SQL selection for the next step.
This allows CAESURA to react on the results returned by previous
operations, which leads to more plans that are in fact executable.
For instance, in Figure 2 after executing the VisualQA operator, the
LLM is able to construct a correct selection condition for the next
step in the plan, based on the resulting values ("yes" and "no").

3.2 Error Handling
With CAESURA several errors can occur during query planning. In a
nutshell, to deal with errors in CAESURA , we use the LLM for error
handling by adding the error message to the prompt and asking
the LLM to fix the error. However, this comes with the challenge
that the root cause of an error is not known. In particular, the root
cause can also lie in any previously executed phase. For instance,
in the planning phase, the LLM could have decided to filter by a
non-existent column, but the mistake is only noticed after choosing
an operator and executing the step.

To fix such errors, we thus use the LLM to identify in which
phase the error occurred, backtrack to it, fix the error, and rerun the
subsequent phases. For this purpose, we use an additional prompt
containing a set of questions that encourage the LLM to reason
about the error such as: (1) What are the potential causes of this
error? (2) Explain in detail how this error could be fixed. (3) Is there
a flaw in my plan (Yes/No)? (4) Is there a more suitable alternative
plan (Yes/No)? (5) Should a different tool be selected for any step
(Yes/No)? (6) Do the input arguments of some of the steps need to
be updated (Yes/No)? Parsing the responses to questions (3) + (4)
allows us to determine whether to backtrack to the planning phase
or if the mistake happened during the mapping phase. To finally
fix the error, the ideas from questions (1) + (2) and the original
error message are added to the prompt to which we backtracked
to, before it (and potentially subsequent phases) is executed again.
While this procedure allows CAESURA to fix non-executable plans in
many cases, it clearly does not guarantee plan executability or even
plan correctness. See Section 5 for further ideas on these issues.

4 INITIAL RESULTS
In our experiments, we are primarily interested in whether CAESURA
is able to construct correct query plans. Our prototype of CAESURA
has access to four multi-modal operators: (1) VisualQA based on
BLIP-2 [9], (2) TextQA based on BART [8], (3) Python UDFs, and (4)
Image Select, which selects images based on a description and is

also based on BLIP-2. It also has access to all relational operators
supported by SQLite and a plotting operator based on seaborn [21].
Datasets. Since there does not yet exist a benchmark for the sce-
narios we envision for CAESURA, we constructed two multi-modal
datasets. (1) The artwork dataset (with tables and images) resembles
the example from Figures 1 and 2. The dataset contains a table about
painting metadata as well as an image collection containing images
of the artworks. We use Wikidata to construct both the metadata
table as well as the image corpus: for the metadata table, we extract
title, inception, movement, etc. for all Wikidata entities that are
instances of ’painting’. (2) The second dataset is the rotowire dataset
(with tables and text) [23] which consists of textual game reports of
basketball games, containing important statistics (e.g. the number
of scored points) of players and teams that participated in each
game. We extend the textual reports by two tables for players and
teams constructed from Wikidata. These contain general informa-
tion, such as name, conference, division, etc. for every team, and
name, height, nationality, etc. for every player.

4.1 Anecdotes
Before we measure the system on a broad set of queries, we first
highlight a set of correctly translated queries to illustrate that using
LLMs for query planning is indeed promising.We present two query
plans obtained by translating two queries using CAESURA, one for
each dataset. We use GPT-4 [11] as LLM for this experiment.
Query 1 (on rotowire): For every team, what is the highest
number of points they scored in a game? This query involves a
join, usage of the TextQA operator as well as an aggregation. Figure
4 (left) shows that CAESURA was able to come up with a correct
logical plan, that it then correctly translates into a physical plan.
The input arguments are chosen correctly as well. Perhaps most
impressive is that CAESURA correctly uses the TextQA operator,
which takes question templates as inputs. During execution, these
templates are instantiated by the operator using the values from
the input table to generate questions like "How many points did
Heat score?", which it then answers for all reports. This allows the
operator to separately extract the points scored by each team.
Query 2 (on artwork): Plot the maximum number of swords
depicted on the paintings of each century. This second and
more complex query on the artwork data requires the inspection
of the images, as well as the visualization of the results in the end.
Again, CAESURA is able to correctly translate this query using two
multi-modal operators: Python and VisualQA followed by a plot
operator, as can be seen in Figure 4 (right).

4.2 Plan Quality
Next, we evaluate CAESURA on a larger set of queries, 24 for each
dataset. For this experiment, we are interested in the query planning
abilities of LLMs. Hence, we skip the data discovery step and assume
perfect retrieval (to not measure retrieval performance).

The queries used in this experiment are clustered along several
aspects. In total, we have 16 queries asking for a single result value,
16 that ask for an output table, and 16 that ask for a plot. Moreover,
half of the queries require multi-modal data while the other half
require only relational data. Importantly, these queries were not
used for tuning the prompts during the development. Table 1 shows

CAESURA: Language Models as Multi-Modal Query Planners CIDR’24, January 14-17, 2024, Chaminade, USA

...

('image',
'num_swords', 'How
many swords are

depicted?', 'int')

...

… joined_team_table JOIN
game_reports ON

joined_team_table.game_id
= game_reports.game_id

('report', 'points_scored',
'How many points did <name>

score?', 'int')

('bar',
'century',

'max_num_swords')

('inception',
'century',

'extract the
century from the
dates by dividing

...')

… JOIN … ON
metadata.img_path
= images.img_path

Step 3: Extract the number of
points scored by each team
from the 'report' column in the
'final_joined_table' table.
New column: points_scored.

Step 1: Join the 'teams'
and the 'teams_to_games'
table on the 'name' column
to combine the two tables.
Output: joined_team_table.

Step 2: Join the
'joined_team_table' and the
'game_reports' table on the
'game_id' column. Output:
final_joined_table.

SQL
(Join)

teams

Heat Eastern Southeast
Spurs Western Southwest

The San
Antonio
Spurs

defeated
the Miami
Heat...

team_to
_games
Heat 1
Heat 2

SQL
(Join)

Text
QA

SELECT name,
MAX(points_scored)

FROM
final_joined_table

GROUP BY name

SQL
(Aggregation)

For every team, what is the highest number of points they scored in a game?

paintings_metadata

Madon 1889-01- img/1.png
Irises 1480-05- img/2.png

SQL
(Join)

Visual
QA

Python

SQL
(Aggregation)

Plot

Step 1: Join the
’paintings_metadata’ and
’painting_images’ tables
on the ’img_path’ column.
Output: joined_table.

Step 2: Extract the number of
swords depicted in each image
from the ’image’ column in the
’joined_table’. New Column(s):
num_swords

Step 3: Extract the century from
each value in the ’inception’
column in the ’joined_table’. New
Column(s): century.

Step 5: Plot the ’result_table’ in a bar plot.
The ’century’ should be on the X-axis and
the ’max_num_swords’ on the Y-Axis.

Plot the maximum number of swords
depicted in the paintings of each century

Step 4: Group the ’joined_table’ by
’century’ and compute the maximum
of ’num_swords’. New Column(s):
max_num_swords.Step 4: Group the 'final_joined_table' by

'team_name' and aggregate the
'points_scored' column using the maximum.
Output: result_table

Logical
Plan

Physical Plan

Logical
Plan

Physical
Plan

painting_images
img/1.png

img/2.png

game
_reports

1
2

Figure 4: CAESURA using GPT-4 is able to correctly translate the user queries to multi-modal query plans that contain TextQA,
VisualQA and Python operators. The final physical plan, including input arguments for the operators, is shown in orange for
both queries. For each operator, we also show the corresponding step of the GPT-4 generated logical plan (in grey). CAESURA
presents image and text collections as special tables (game_reports with columns game_id and report; painting_images with
columns img_path and image) to the LLM, s.t. they can be the input to a regular join. The plans are presented as-is and are not
optimized. The TextQA operator takes a question template as input, which is translated to questions by inserting different team
names from the values in the table. The Python operator takes a description as input, which is translated to code using GPT-4.

the accuracies for the different query groups using ChatGPT-3.5
and GPT-4 as LLM.

We see that CAESURA using GPT-4 is better than ChatGPT-3.5 and
is even able to correctly translate 87.5%2 of queries despite never
being fine-tuned on the queries. The approach works especially
well on the artwork dataset, where CAESURA is able to translate all
queries to correct query plans. However, we also see that there is
still room for improvement. In particular, on the rotowire dataset,
which consists of more tables and contains texts instead of images,
only three-quarters of queries could be translated correctly. In the
next experiment, we analyze the mistakes CAESURA makes when
generating query plans.

4.3 Error Analysis
In Table 2, we categorize the errors and show the frequency of the
errors for different categories. We found that the possible errors are
quite diverse: sometimes wrong physical operators were chosen or
important steps were missing in the final plan (e.g. CAESURA forgot
to join).

The most common mistake for CAESURA powered by GPT-4 was
that it chose the wrong input arguments for physical operators
(e.g., wrong parameters for SQL, a wrong question for QA, usage
of non-existent column names). For GPT-4, this happened for 3
out of the 48 queries. For the smaller model, ChatGPT-3.5, we see
that it had some more problems understanding the data correctly
2plan correctness is decided by hand by a human observer

Models ChatGPT-3.5 GPT-4
Plan type logical physical logical physical

Artwork overall 79.2% 70.8% 100% 100%
Rotowire overall 50.0% 41.7% 87.5% 75.0%
Single modality 79.2% 75.0% 100% 92.7%

Multiple modalities 50.0% 37.5% 87.5% 83.3%
Single value 75.0% 62.5% 100% 93.8%

Table 68.8% 62.5% 87.5% 81.3%
Plot 50.0% 43.8% 93.8% 87.5%
All 64.6% 56.2% 93.8% 87.5%

Table 1: Correctly translated plans for the different datasets,
modalities, and output formats. We show the percentage of
correctly generated logical plans, as well as physical plans.

(see category Data Misunderstanding), a mistake that happened
only once with GPT-4. In particular, ChatGPT-3.5 often tried to
extract what is depicted in the image based on the title or the genre
column of the metadata table. Thus, it often avoided the usage of
multi-modal operators and instead tried to solve everything using
SQL, resulting in flawed plans.

Interestingly, there was one query on the rotowire dataset that
both models could not translate at all: How many games did each
team lose? We speculate that this is the case because the query
sounds simple and does not convey the operations necessary to

CIDR’24, January 14-17, 2024, Chaminade, USA Matthias Urban and Carsten Binnig

Category ChatGPT-3.5 GPT-4

Impossible Actions logical 4 2
Data Misunderstanding logical 9 1
Illogical / Missing Steps logical 3 0

Wrong Arguments physical 3 3
Wrong Tool physical 1 0

Table 2: Number of specific kinds of mistakes CAESURA made
during query planning. In the upper three categories the
mistake occurred in the planning phase (i.e. wrong logical
plan), and for the lower two the mistake occurred in the
mapping phase. We see that the older model often does not
understand the data correctly (e.g. it tries to determine what
is depicted on a painting based on its title).

answer it. One possibility to answer this query would be to join
the teams table and the game reports, use the TextQA operator
to ask the question "Did <name> lose?", and then aggregate the
losses. Unfortunately, ChatGPT-3.5 tried to solve it using a single
SQL query ignoring the text completely. GPT-4, instead, was aware
to use the text but it was not able to generate the correct operator
for extracting the required information from the text.

5 RESEARCH DIRECTIONS
We have seen that using today’s state-of-the-art language models
such as GPT-4 together with careful prompting yields promising
results for multi-modal query planning. However, there is still an
abundance of interesting open challenges to be solved. In particular,
query planning is expected to yield correct and efficient plans,
which cannot be guaranteed when LLMs are utilized. In this Section,
we explain our ideas on how these challenges could be overcome.
Plan Executability and Correctness. While the reasoning ca-
pabilities of GPT-4 and similar LLMs are already impressive, they
still make mistakes (see Table 2). In this regard, there are already
first works that improve the reasoning capabilities of today’s LLMs
[1, 26, 31], and it remains to be seen if these improvements are
translated to improved query planning. Nevertheless, we speculate
that it might not be enough to meet the strict quality constraints
on query plans. One interesting idea to push the data-reasoning
capabilities of LLMs is to construct a fine-tuning dataset for query
planning, similar to SPIDER [30]. SPIDER is a text-to-SQL dataset
that boosted research on semantic parsing. A similar fine-tuning
dataset for multi-modal query planning could lead to comparable
advancements in this field. Such a fine-tuning dataset comes with
several additional benefits on top of better reasoning skills and
higher-quality plans. Most importantly, it could be used to fine-
tune smaller, open-source models, which resolve any privacy issues
currently present when using external models via an API. Moreover,
the use of smaller LLMs would also reduce the computational (and
monetary) cost of CAESURA.
Plan Optimization. In practice, there is also the need to generate
runtime efficient query plans. However, optimizing the resulting
multi-modal query plan is far from trivial, since it requires rea-
soning over the runtime behavior of multi-modal operators. This
behavior can be hard to predict. For instance, the execution of a

Python operator can lead to vastly different runtimes depending
on the Python code that is executed by the operator. While there
are already systems that are able to (partially) optimize UDFs in
SQL queries [12], they usually do not consider multi-modal data
and the use of powerful Machine Learning models. We believe an
important step towards optimizing such multi-modal query plans
is to learn cost models for multi-modal operators. There is already
a rich line of work for learned cost models (e.g. [5]). However, so
far these only capture the cost for traditional database operators
and not the complex operators we consider in this paper.
Security. Since we only have limited control over what is gener-
ated by an LLM, the LLM could theoretically generate malicious or
destructive code to be executed over our data. In our current proto-
type, we therefore limit e.g. generated SQL code to only SELECT
statements and prevent running UPDATE, INSERT or DELETE state-
ments that could maliciously manipulate data. While we did not
observe such behavior during the experiments, a more extensive
analysis is necessary to rule out such concerns.

6 THE ROAD AHEAD
Gaining insights from multi-modal data is a difficult endeavor be-
cause it usually involves the manual creation of complex processing
pipelines. Hence, we present CAESURA, a Language-Model-driven
query planner that generates complex processing pipelines auto-
matically from queries in natural language. While CAESURA shows
first promising results, there are still a plethora of open challenges
as discussed before. In particular, today’s language models suffer
from reasoning difficulties and hallucinations, leading to query
plans that crash or return wrong results, as well as plans that are
sub-optimal in terms of runtime.

ACKNOWLEDGMENTS
We thank the reviewers for their feedback. This research is funded
by the Hochtief project AICO (AI in Construction), by the BMBF
and the state of Hesse as part of the NHR Program, as well as the
HMWK cluster project 3AI (The ThirdWave of AI). Finally, we want
to thank hessian.AI at TU Darmstadt as well as DFKI Darmstadt.

REFERENCES
[1] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi,

Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, and Torsten Hoefler. 2023. Graph of Thoughts: Solving Elaborate
Problems with Large Language Models. https://doi.org/10.48550/arXiv.2308.
09687 arXiv:2308.09687 [cs]

[2] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha
Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of Artificial
General Intelligence: Early Experiments with GPT-4. https://doi.org/10.48550/
arXiv.2303.12712 arXiv:2303.12712 [cs]

[3] Zui Chen, Zihui Gu, Lei Cao, Ju Fan, SamMadden, andNan Tang. 2023. Symphony:
Towards Natural Language Query Answering over Multi-modal Data Lakes.
(2023).

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, HenrykMichalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr

https://doi.org/10.48550/arXiv.2308.09687
https://doi.org/10.48550/arXiv.2308.09687
https://arxiv.org/abs/2308.09687
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://arxiv.org/abs/2303.12712

CAESURA: Language Models as Multi-Modal Query Planners CIDR’24, January 14-17, 2024, Chaminade, USA

Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling
with Pathways. arXiv:2204.02311 [cs] (April 2022). arXiv:2204.02311 [cs]

[5] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for out-of-
the-Box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (July 2022), 2361–2374.
https://doi.org/10.14778/3551793.3551799

[6] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy
Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Noah Brown, Tomas Jackson, Linda Luu, Sergey Levine, Karol Hausman, and
Brian Ichter. 2022. Inner Monologue: Embodied Reasoning through Planning
with Language Models. arXiv:2207.05608 [cs]

[7] Saehan Jo and Immanuel Trummer. 2023. Demonstration of ThalamusDB: An-
swering Complex SQL Queries with Natural Language Predicates on Multi-Modal
Data. In Companion of the 2023 International Conference on Management of Data.
ACM, Seattle WA USA, 179–182. https://doi.org/10.1145/3555041.3589730

[8] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Genera-
tion, Translation, and Comprehension. arXiv:1910.13461 [cs, stat] (Oct. 2019).
arXiv:1910.13461 [cs, stat]

[9] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. BLIP-2: Bootstrap-
ping Language-Image Pre-training with Frozen Image Encoders and Large Lan-
guage Models. https://doi.org/10.48550/arXiv.2301.12597 arXiv:2301.12597 [cs]

[10] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, and Jianfeng Gao. 2023. Chameleon: Plug-and-Play Composi-
tional Reasoning with Large Language Models. arXiv:2304.09842 [cs]

[11] OpenAI. 2023. GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774
arXiv:2303.08774 [cs]

[12] Astrid Rheinländer, Ulf Leser, and Goetz Graefe. 2018. Optimization of Complex
Dataflows with User-Defined Functions. ACM Comput. Surv. 50, 3 (May 2018),
1–39. https://doi.org/10.1145/3078752

[13] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer:
Language Models Can Teach Themselves to Use Tools. arXiv:2302.04761 [cs]

[14] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’79). Association for Computing Machinery, New York, NY,
USA, 23–34. https://doi.org/10.1145/582095.582099

[15] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting
Zhuang. 2023. HuggingGPT: Solving AI Tasks with ChatGPT and Its Friends in
Hugging Face. arXiv:2303.17580 [cs]

[16] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel,
and Alon Halevy. 2021. From Natural Language Processing to Neural Databases.
Proc. VLDB Endow. 14, 6 (Feb. 2021), 1033–1039. https://doi.org/10.14778/3447689.
3447706

[17] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
https://doi.org/10.48550/arXiv.2302.13971 arXiv:2302.13971 [cs]

[18] Giovanni Trappolini, Andrea Santilli, Emanuele Rodolà, AlonHalevy, and Fabrizio
Silvestri. 2023. Multimodal Neural Databases. https://doi.org/10.1145/3539618.
3591930 arXiv:2305.01447 [cs]

[19] Matthias Urban and Carsten Binnig. 2023. Towards Multi-Modal DBMSs for
Seamless Querying of Texts and Tables. https://doi.org/10.48550/arXiv.2304.
13559 arXiv:2304.13559 [cs]

[20] Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. 2023. Describe,
Explain, Plan and Select: Interactive Planning with Large Language Models
Enables Open-World Multi-Task Agents. arXiv:2302.01560 [cs]

[21] Michael L. Waskom. 2021. seaborn: statistical data visualization. Journal of Open
Source Software 6, 60 (2021), 3021. https://doi.org/10.21105/joss.03021

[22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of Thought Prompting Elicits Reasoning in Large
Language Models. arXiv:2201.11903 [cs] (April 2022). arXiv:2201.11903 [cs]

[23] Sam Wiseman, Stuart M. Shieber, and Alexander M. Rush. 2017. Chal-
lenges in Data-to-Document Generation. arXiv:1707.08052 [cs] (July 2017).
arXiv:1707.08052 [cs]

[24] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and
Nan Duan. 2023. Visual ChatGPT: Talking, Drawing and Editing with Visual
Foundation Models. arXiv:2303.04671 [cs]

[25] Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal
Ahmed, Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. 2023. MM-REACT:
Prompting ChatGPT for Multimodal Reasoning and Action. arXiv:2303.11381 [cs]

[26] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving
with Large Language Models. arXiv:2305.10601 [cs]

[27] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv:2210.03629 [cs]

[28] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data.
https://doi.org/10.48550/arXiv.2005.08314 arXiv:2005.08314 [cs]

[29] Tao Yu, Chien-ShengWu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi Yang,
Dragomir Radev, Richard Socher, and Caiming Xiong. 2021. GraPPa: Grammar-
Augmented Pre-Training for Table Semantic Parsing. arXiv:2009.13845 [cs] (May
2021). arXiv:2009.13845 [cs]

[30] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. arXiv:1809.08887 [cs]

[31] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. 2022. STaR: Boot-
strapping Reasoning With Reasoning. https://doi.org/10.48550/arXiv.2203.14465
arXiv:2203.14465 [cs]

[32] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong,
Stefan Welker, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani,
Johnny Lee, Vincent Vanhoucke, and Pete Florence. 2022. Socratic Models:
Composing Zero-Shot Multimodal Reasoning with Language. https://doi.org/10.
48550/arXiv.2204.00598 arXiv:2204.00598 [cs]

[33] Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex
Smola. 2023. Multimodal Chain-of-Thought Reasoning in Language Models.
arXiv:2302.00923 [cs]

[34] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. 2023.
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models.
arXiv:2205.10625 [cs]

https://arxiv.org/abs/2204.02311
https://doi.org/10.14778/3551793.3551799
https://arxiv.org/abs/2207.05608
https://doi.org/10.1145/3555041.3589730
https://arxiv.org/abs/1910.13461
https://doi.org/10.48550/arXiv.2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2304.09842
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3078752
https://arxiv.org/abs/2302.04761
https://doi.org/10.1145/582095.582099
https://arxiv.org/abs/2303.17580
https://doi.org/10.14778/3447689.3447706
https://doi.org/10.14778/3447689.3447706
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/3539618.3591930
https://doi.org/10.1145/3539618.3591930
https://arxiv.org/abs/2305.01447
https://doi.org/10.48550/arXiv.2304.13559
https://doi.org/10.48550/arXiv.2304.13559
https://arxiv.org/abs/2304.13559
https://arxiv.org/abs/2302.01560
https://doi.org/10.21105/joss.03021
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1707.08052
https://arxiv.org/abs/2303.04671
https://arxiv.org/abs/2303.11381
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://doi.org/10.48550/arXiv.2005.08314
https://arxiv.org/abs/2005.08314
https://arxiv.org/abs/2009.13845
https://arxiv.org/abs/1809.08887
https://doi.org/10.48550/arXiv.2203.14465
https://arxiv.org/abs/2203.14465
https://doi.org/10.48550/arXiv.2204.00598
https://doi.org/10.48550/arXiv.2204.00598
https://arxiv.org/abs/2204.00598
https://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2205.10625

	Abstract
	1 Introduction
	2 Language Models as Query Planners
	2.1 Multi-phase Query Planning
	2.2 Challenges

	3 Overview of CAESURA
	3.1 Phases of Query Planning
	3.2 Error Handling

	4 Initial Results
	4.1 Anecdotes
	4.2 Plan Quality
	4.3 Error Analysis

	5 Research Directions
	6 The Road Ahead
	Acknowledgments
	References

