
A Model forQuery Execution Over Heterogeneous Instances
Ziheng Wang

Stanford University
zihengw@stanford.edu

Emanuel Adamiak
Stanford University

adamiak@stanford.edu

Alex Aiken
Stanford University
aaiken@stanford.edu

ABSTRACT
Decreasing VM start-up times and recent trends in serverless com-
puting on public clouds now allow users to spin up a dedicated
cluster for an SQL query, in contrast to the longstanding para-
digm of submitting queries to a fixed cluster. This new capability
places additional responsibility on the query planner, which now
must recommend the most cost-efficient cluster configuration for a
given query. While the space of potential cluster configurations is
immense, recent work has mostly focused on homogeneous clus-
ters that consist of only one instance type. We argue that to truly
leverage the flexibility of public clouds, we need to consider hetero-
geneous clusters consisting of multiple instance types. In this paper,
we present a framework to gauge the optimality of cluster config-
urations, an intuitive model showcasing how heterogeneity leads
to performance improvements for pipelined joins, and preliminary
experimental evidence supporting the model.

1 INTRODUCTION
While a large volume of work has focused on optimizing distributed
query execution on a fixed cluster configuration, we focus on the
emerging problem of optimizing the cluster configuration for a
particular query. This issue is gaining relevance as the fast VM
spin-up time on public clouds has made it practical to spin up a
dedicated cluster for each query instead of sharing a fixed cluster
among queries, which enables highly desirable performance and
security isolation amongst different data processing jobs. While
already viable for long-running queries prevalent in data pipelines,
new developments in micro-VMs promise to unlock this potential
even for interactive queries [3].

The performance and cost-efficiency of a distributed query en-
gine on any particular query could vary drastically depending on
the VM instance types on which it is executed. EMR, the hosted
Hadoop service offering SparkSQL and Trino on AWS, supports
more than 400 VM options. Instance types on cloud providers like
AWS belong to different classes, some optimized for compute with
a higher vCPU to memory ratio, while others are tailored for IO
performance. Figure 1 displays the computed cost per GB of mem-
ory and cost per Gbps of network bandwidth of different instance
types on AWS. There can be a 14.7x difference in dollar cost per
GB of RAM and a 61.7x (!) difference in dollar cost per Gbps of
bandwidth between instances. Even among the much smaller set of
instance types typically used for Spark or Trino clusters in practice,
we commonly observe 3x differences.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2024. 14th Annual Conference on
Innovative Data Systems Research (CIDR ’24). TODO, Chaminade, USA

0.02 0.04 0.06 0.08
$ Cost per GB of RAM

0

10

20

30

40

50

Co
un

t

0.0 0.5 1.0 1.5
$ Cost per Gbps of Bandwidth

0

10

20

30

40

50

60

Figure 1: Histograms of memory and bandwidth costs of
available instance types on AWS.

To the best of our knowledge, all current work on optimizing
the cluster configuration for query processing has focused on ho-
mogeneous clusters, where the distributed query engine executes
the entire query on a cluster consisting of a single instance type.
Of particular interest is recent work by Leis and Kuschewski that
proposes a mental model for optimizing instance type selection
based on the Pareto optimal frontier of the query’s total cost and
the total execution time [13].

While an important first step, we believe homogeneous clusters
do not fully exploit the resource flexibility offered on the public
cloud today. This work studies the optimal cluster configuration
problem for heterogeneous clusters, which might contain more than
one instance type. We make the following contributions:

• We propose a Pareto optimal framework for evaluating clus-
ter configurations in the context of heterogeneous clusters
based on iso-cost curves, instead of the iso-instance curves
proposed in [13].

• We apply the framework to left-deep join trees in pipelined
query engines and provide intuition on why heterogeneous
clusters are beneficial for cost efficiency.

• We evaluate heterogeneous clusters in a real pipelined query
engine, showing performance benefits over homogeneous
clusters on an example join.

2 WHAT IS OPTIMAL?
In this section, we propose a method to evaluate the optimality of
cluster configuration given a fixed query. Let us assume we have
a distributed query engine and a query we would like to execute
on some fixed input data. The distributed engine could be run
on a homogeneous cluster, consisting of one instance type, or a
heterogeneous cluster, with multiple different instance types.

The key question is: How do we know the cluster configura-
tion we picked is the best one?

CIDR’24, January 14-17, 2024, Chaminade, USA Ziheng Wang, Emanuel Adamiak, and Alex Aiken

Total Completion Time (s)

To
ta

l W
or

kl
oa

d
Co

st
 (

$)

Pareto Optimal Frontier

Instance Type X
Instance Type Y
Instance Type Z

Figure 2: The model in [13] based on iso-instance curves.

2.1 Pareto Optimality
To answer this question, we expand on the framework developed
by Leis and Kuschewski [13], which only considered homogeneous
clusters. The framework considers a graph with the 𝑥-axis repre-
senting the total execution time of the query and the 𝑦-axis rep-
resenting the workload cost, as shown in Figure 2. Each point on
the plot corresponds to a cluster configuration: if we assume that,
given a cluster configuration, there is one way for the query engine
to execute the query, then each configuration has exactly one fixed
total completion time and workload cost.

The Pareto optimal frontier represents the lowest total workload
cost for a fixed completion time. We should aim to pick cluster
configurations that lie on this frontier. The Pareto frontier is pa-
rameterized by the query engine, the input data, and the query.
Enhancing the engine’s efficiency or simplifying the query shifts
the curve to the left and vice versa.

Leis and Kuschewski propose a model that predicts how the
total workload cost and completion time vary as a function of the
number of VMs in a homogeneous cluster for a specific instance
type. This approach results in an iso-instance curve in the graph
for each instance type. An iso-instance curve could intersect the
Pareto frontier at more than one point, as shown in Figure 2.

2.2 Iso-instance vs. Iso-cost Curves
If we consider heterogeneous clusters, there are a very large num-
ber of such curves to draw since the potential cluster configurations
grow exponentially with the number of different instance types
considered. An alternative approach is to consider cluster configura-
tions with the same cost per hour instead of the same instance type.
Cluster configurations with the same unit-cost can be described by
a straight line from the origin as shown in Figure 3, with the slope
equal to the cost per hour of the cluster configurations on that line.
We will refer to these lines as iso-cost curves (alternatively iso-cost
lines).

An iso-cost curve by itself is not tied to a specific query and
is purely based on available cluster configurations by the cloud
provider and instance costs. Given the query, the runtimes of the
cluster configurations described by the curve will map to a set

Total Completion Time (s)

To
ta

l W
or

kl
oa

d
Co

st
 (

$)

Pareto Optimal Frontier

2 $/hour
4 $/hour
8 $/hour

Figure 3: Our proposed framework based on iso-cost curves.

of points on this curve. However, the Pareto frontier is tied to a
specific query, and it intersects these iso-cost curves at different
points for different queries. We will show some real examples of
iso-cost curves in Section 4.

An important benefit of thinking about cluster configurations in
terms of these iso-cost curves is that, unlike iso-instance curves, each
iso-cost curve intersects the Pareto frontier at exactly one point.
In other words, among all possible cluster configurations with a
particular cost per hour, there is only one cluster configuration that
is optimal for a particular query.

In a heterogeneous cluster, a single cluster configuration could
map to multiple points along the iso-cost curve if the query en-
gine explores different mapping strategies of the query onto the
processors, i.e. using different instance types for different stages1.
Therefore, the optimal point on an iso-cost curve corresponds to
the optimal mapping strategy of the optimal cluster configuration.

We can thus approach our key question using constrained opti-
mization: Among cluster configurations with the same cost
per hour, which is the most efficient for the given query
engine and query?

2.3 Heterogeneity = More Choice
We hypothesize that the optimal point along an iso-cost curve
is more likely to correspond to a heterogeneous cluster than a
homogeneous cluster. To see why, let us introduce some formalism
to describe a cluster configuration.

We assume our cluster is composed of instances from a set of 𝑁
instance types, described by length-𝑁 vectors c, cpu, mem, and
io. These vectors represent the per-hour cost, number of vCPUs,
available RAM, and network bandwidth of each instance type. The
cluster configuration can then be described by another vector n
denoting how many of each instance type is in the cluster.

If we assume that the runtime for the optimal mapping strategy
of a cluster configuration is a function 𝐻 of the cluster’s total
resources, then we arrive at the following constrained optimization
problem for the optimal configuration along an iso-cost curve:

1This observation applies to homogeneous clusters as well, though it is not considered
in [13].

A Model for Query Execution Over Heterogeneous Instances CIDR’24, January 14-17, 2024, Chaminade, USA

Optimal Point

Figure 4: Optimizing 𝐻 over the constraint polytope. For
simplicity, the IO axis is ignored in the plot.

minimizen 𝐻 (cpu · n, io · n,mem · n)

subject to c · n = 𝐶
(1)

We define new variables for total resources, 𝑐𝑝𝑢 = cpu · n, and
similarly for𝑚𝑒𝑚 and 𝑖𝑜 . If we also define the set of all possible
combinations of these values given the total cost constraint to be
𝑃 , then we can rewrite Equation 1 in terms of total resources:

minimize
𝑐𝑝𝑢,𝑚𝑒𝑚, 𝑖𝑜

𝐻 (𝑐𝑝𝑢,𝑚𝑒𝑚, 𝑖𝑜)

subject to (𝑐𝑝𝑢,𝑚𝑒𝑚, 𝑖𝑜) ∈ 𝑃
(2)

The problem boils down to optimizing a potentially hard-to-
evaluate function 𝐻 over a constraint set 𝑃 , as shown in Figure 4.
We refer to the constraint set as the resource constraint polytope. The
benefit of using heterogeneous clusters lies in greatly expanding the
size of this polytope by leveraging the vastly different resource-per-
unit-cost characteristics of cloud instances. Note as shown in Figure
4, 𝐻 might not be continuous, but should be generally decreasing
with increasing resources.

This model can be extended to incorporate resource types other
than vCPU, IO, and total memory to account for different vCPU
types like Gravitron or AMD. The constraint polytopewould remain
linear if the amount of this new resource increases linearly with
the number of instances.

Figure 5 shows the significant resource flexibility achieved through
heterogeneous instances, specifically in terms of total vCPU and
RAM. The different colors represent constraint polytopes corre-
sponding to different total cluster costs. For instance, the purple
region in Figure 5 represents all possible combinations of total
vCPU and RAM achievable for both (a) heterogeneous clusters and
(b) homogeneous clusters with a total cost of $4/hour, using three
different instance types. Homogeneous clusters provide only three
choices, where the maximum number of instances available for
each type is selected within the cost constraint. In contrast, hetero-
geneous cluster configurations "connect" the vertices identified by
the homogeneous clusters with the same cost.

Importantly, instead of allowing the users to obtain more of
a particular resource type like total vCPUs for a particular price,

Figure 5: Available total resource combinations for fixed total
cost for a) heterogeneous clusters and b) homogeneous clus-
ters. Different colors correspond to different total cost per
hour from $.5 to $5/hour in increments of $0.5 from lower
left to upper right.

heterogeneity offers more fine-grained flexibility in terms of trade-
offs between different resource types.

3 WHY IS MORE CHOICE BENEFICIAL?
Increasing the space of potential total resource combinations does
not guarantee enhanced query performance. For example, if the
query engine is entirely CPU-bound on a query, the optimal cluster
configuration should consist solely of the instance type with the
lowest cost per vCPU per hour.

As illustrated in Figure 5, if the best performance is achieved
by maximizing one resource type, homogeneous clusters would
suffice. However, real query engines typically exhibit different re-
source demands when executing different parts of a query, which
makes the increased flexibility in navigating the total resource space
beneficial.

3.1 Query and Query Engine
To illustrate the potential benefits of this flexibility, we focus on
the query execution of multi-stage joins in pipelined query engines,
such as Snowflake, SingleStore, Trino, and DuckDB [6, 8, 12, 19].
These queries are ubiquitous in production data pipelines.

The query planner typically executes a multi-stage join with a
left-deep join tree as shown in Figure 6, which executes a series of
distributed hash joins in a pipeline. Typically, the largest table is
selected as a probe table, and the other tables serve as build tables.
The join is executed in two phases. In the build phase, build tables

CIDR’24, January 14-17, 2024, Chaminade, USA Ziheng Wang, Emanuel Adamiak, and Alex Aiken

⨝ B

⨝ A

 σ σ

 σ

 T S

 R

Figure 6: A left deep join tree.

R and S are read in parallel and hashed in memory with possible
disk spilling. In the probe phase, probe table T is read and joined
against the pre-built hash tables in a pipeline.

In a typical star-schema data warehouse, the build tables are a lot
smaller than the probe table, which leads to the probe phase being
the bottleneck. In this work, we will focus on the performance of the
probe phase. Consequently, our key question becomes very specific:
among cluster configurations on a fixed iso-cost curve, which
is the best for the probe phase pipeline in a multi-stage join?

3.2 A Concrete Example
We have seen that different cluster configurations allow us to navi-
gate within the resource constraint polytope to optimize𝐻 as given
in Equation 2. However, up until this point we have avoided spec-
ulating on the shape of 𝐻 . How do we relate the total amount of
resources to the runtime of the query?

For simplicity, let’s consider just a two-stage probe phase pipeline,
for example, this SQL query on the TPC-H dataset.

Listing 1: Example join query
1 SELECT sum(l_quantity) as sum_qty ,
2 sum(l_extendedprice) as sum_base_price ,
3 sum(l_discount) as sum_disc ,
4 sum(l_tax) as sum_tax ,
5 max(l_shipdate) as max_shipdate ,
6 max(l_commitdate) as max_commitdate ,
7 max(l_receiptdate) as max_receiptdate ,
8 sum(o_totalprice) as sum_charge ,
9 max(o_orderdate) as max_orderdate
10 FROM lineitem , orders
11 WHERE l_shipmode in ('SHIP', 'MAIL')
12 and l_orderkey = o_orderkey;

Assuming lineitem is the probe table, a pipelined query engine
like Trino would execute the probe phase pipeline as a sequence of
a scan stage followed by a join stage [12, 19]. Batches produced by
tasks in the scan stage can (and should) be consumed immediately
by tasks in the join stage to avoid materializing the intermediate
results as much as possible. The two stages effectively proceed
concurrently, sharing resources in the cluster.

To understand how the performance of these two stages varies
with the amount of vCPU, memory, and IO assigned to each stage,
we benchmark the performance of the scan stage and the join stage
independently. We assign various combinations of vCPU, memory,

Figure 7: Performance for A) scan stage B) join stage as a
function of assigned vCPU.

and IO resources to each stage, using the query shown in Listing 1
on TPC-H SF-100 with input in Parquet format stored on AWS S3.

We use an open-source distributed query engine Quokka in our
experiments [16]. Quokka’s architecture resembles that of Trino,
where tasks belonging to different stages in a pipeline are scheduled
to executors on different machines by a centralized scheduler. On
the TPC-H query benchmark, Quokka is able to achieve competitive
results with Trino and SparkSQL. We select Quokka because it
offers a simple interface to spin up heterogeneous clusters and it
allows us to assign different resources to different query stages, a
functionality missing in Trino or SparkSQL.

The benchmark results are shown in Figure 7. For the scan stage,
we find that on the instance types we selected, the workload is
entirely CPU-bound. While one might expect network bandwidth
to be the bottleneck, Quokka relies on open-source Parquet readers,
which cannot saturate the high available network bandwidth per
core. High-performance query engines like Clickhouse and DuckDB
have developed their own highly optimized Parquet readers to mit-
igate this issue [7, 18], but other query engines like SparkSQL and
Trino share this problem. In practice, we observe no performance
difference when using network-optimized AWS instances and reg-
ular instances on TPC-H-like workloads on Trino, SparkSQL, or
Quokka. In terms of memory, a fixed amount of memory is required
by the tasks to parse Parquet files. Additional memory does not
lead to a speedup.

The join stage’s performance is dominated by both the available
memory and the number of vCPUs. When there is not enough mem-
ory, Quokka has to spill the build side to disk, leading to substantial
performance degradation. For both disk-based and in-memory joins,
increasing the number of vCPUs results in increased performance.
Like other open-source query engines, Quokka does not support
graceful performance degradation.2 Once the necessary amount of
RAM is available to perform the in-memory join, additional RAM
does not improve performance. Similar to the scan stage, we did not
observe much impact on performance from the network bandwidth.

These results suggest that the shape of 𝐻 resembles the surface
in Figure 4: there is a qualitative shift in the shape of the function
when there is enough RAM to perform an in-memory join. This
analysis suggests a simple heuristic to select the optimal cluster
configuration:

• If the largest total memory in the constraint polytope is less
thanwhat is needed for an in-memory join, use themaximum

2Trinowould typically run out of memorywhile SparkSQL defaults to amore expensive
disk-based sort-merge join.

A Model for Query Execution Over Heterogeneous Instances CIDR’24, January 14-17, 2024, Chaminade, USA

A B

C

D

CPU

R
A
M

Figure 8: Illustration of the best cluster configurations
achieved by heterogeneous clusters (D) vs homogeneous clus-
ters (B). D has more CPU than B at the same cost per hour.

10 20 30 40 50 60
Total Completion Time (s)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

To
ta

l W
or

kl
oa

d
Co

st
 (

$)

R8

C6R5

C8R4

C16

Pareto Frontier

Figure 9: Speedups achieved by using heterogeneous clusters
along the iso-cost curve with a unit cost of $4.8/hour. C8R4
denotes cluster configuration with eight c6gd.2xlarge and
four r6id.2xlarge.

number of vCPUs. Since the query is bottlenecked by one
resource (vCPU), heterogeneous clusters will not help.

• If the polytope contains configurations with enoughmemory
to perform an in-memory join, then use the configuration
that has exactly this much memory and as many vCPUs as
possible, since additional memory does not contribute to
higher performance. Heterogeneous clusters are helpful in
this case.

Figure 8 illustrates why heterogeneous clusters are useful in the
latter case.We have denoted the polytope in blue. Aswe have shown
before in Figure 5, homogeneous clusters only hit the vertices.
However, the most efficient total resource combination occurs on
the line that connects vertices B and C, which can be approached
more accurately with a heterogeneous cluster. To construct cluster
configurations that connect B and C, one simply has to combine the
instance types that would have made up the homogeneous clusters
at B and C and mix the two in different ratios.

R3

C6

vCPUs

R
A

M
 (G

B
)

M4

R2C2

R1C4

M2C3

192

128

160

8 10 12

Threshold 1:
120GB

Threshold 2:
150GB

Figure 10: Illustration of the polytope depicted in Figure 8 for
r6id.2xlarge, m6id.2xlarge and c6gd.2xlarge instance types
with a total cost of around $1.8 an hour on demand. Valid
cluster configurations are shown by solid dots.

4 EXPERIMENTS
We take the query shown in Listing 1 and explore whether using
heterogeneous clusters can lead to real speedups in the pipelined
probe phase. We consider heterogeneous clusters consisting of only
two instance types, r6id.2xlarge and c6gd.2xlarge.

In this study, we do not consider different sizes of each instance
(i.e. 4xlarge, 8xlarge, etc.), as distributed database offerings typically
rely on a fixed instance size. The 2xlarge setting (8 vCPUs) appears
to be what Snowflake uses in practice [2] and what Databricks used
for the TPC-DS benchmark [1].

The hourly on-demand pricing for the r6id.2xlarge instance is
approximately double that of the c6gd.2xlarge instance. The two
have the same number of vCPUs while the former has 4x the RAM
per instance, which makes the former more cost-efficient for RAM
and the latter more cost-efficient for vCPUs.

We consider a cost budget of using eight r6id.2xlarge instances or
sixteen c6gd.2xlarge instances. We could trade off one r6id.2xlarge
instance for two c6gd.2xlarge instances in our cluster while main-
taining the same cost per hour, which in terms of total resources
amounts to moving on the line between points B and C in Figure 8.

Figure 9 shows the concrete performance tradeoffs made as we
explore heterogeneous cluster configurations that lie on that line.
We start from eight r6id.2xlarge instances (R8)—offering the most
RAM but the fewest CPUs—which allows us to do an in-memory
join with a total completion time of 27s.

As we use more c6gd.2xlarge instances in our cluster, we move to
configurations such as C8R4 (eight c6gd.2xlarge and four r6id.2xlarge
instances) and C6R5. These configurations have less RAM but still
enough to execute the hash join purely in memory. However, these
configurations have more CPUs, leading to a much faster total
runtime of 20s and 21s, amounting to a 35% speedup over the R8
configuration.

As we move purely to c6gd.2xlarge instances we have much less
RAMand cannot execute the join inmemory, which forces the query
engine to use disk-spilling and severely degrades performance,
leading to a runtime of 50s, more than two times slower than the
C8R4 configuration.

CIDR’24, January 14-17, 2024, Chaminade, USA Ziheng Wang, Emanuel Adamiak, and Alex Aiken

10 15 20 25 30
Total Completion Time (s)

0.004

0.006

0.008

0.010

0.012

0.014

To
ta

l W
or

kl
oa

d
Co

st
 (

$)

R1C4

C6 (Disk)

R2C2

M4

M2C3 (Disk)

R3

a $1.8/hour

10 15 20 25 30
Total Completion Time (s)

0.004

0.006

0.008

0.010

0.012

0.014

C6 (Disk)

R1C4 (Disk)

R2C2

M2C3 (Disk)
R3

M4 (Disk)

b $1.8/hour

Figure 11: Runtimes of cluster configurations in Figure 10 assuming a disk-spilling threshold of a) 120GB and b) 150GB. The
best performing cluster configuration is on the lower left.

The evaluation illustrated in Figure 9 uses the framework laid
out in Section 2, where we move along an iso-cost curve. We see
that the heterogeneous cluster configurations bring us closer to the
hypothetical Pareto optimal frontier to the lower left. Since we are
only exploring a very limited subspace of cluster configurations
on this iso-cost curve, we cannot definitively state that any of our
sampled configurations are “Pareto optimal”. However, we see that
the heterogeneous configurations C8R4 and C6R5 perform strictly
better than the homogeneous configurations R8 and C16.

4.1 A More Complex Example
We now consider a more complex example with three different in-
stance types, r6id.2xlarge, c6gd.2xlarge and m6id.2xlarge. For about
$1.8/hour, we can have a cluster of three r6id.2xlarge instances, or
four m6id.2xlarge instances or six c6gd.2xlarge instances. We con-
sider a more complicated join query involving three tables based
on TPC-H 3, shown in Listing 2:

Listing 2: Multi-stage join query
1 SELECT l_orderkey , o_orderdate , o_shippriority
2 sum(l_extendedprice * (1 - l_discount))
3 as revenue ,
4 FROM customer , orders , lineitem
5 where c_custkey = o_custkey
6 and l_orderkey = o_orderkey
7 and o_orderdate < date '1995 -03 -15'
8 and l_shipdate > date '1995 -03 -15'
9 group by l_orderkey , o_orderdate , o_shippriority

In Figure 10 we show what the constraint polytope shown ab-
stractly in Figure 8 looks like for these three instance types. Besides

the homogenous cluster configurations, we also consider three het-
erogeneous cluster configurations: R2C2 (two r6id.2xlarge instances
and two c6gd.2xlarge instances), R1C4 and M2C3.

We consider two different RAM thresholds to force disk-spilling
of the joins at 120GB and 150GB. The performance of each cluster
configuration under these two settings is shown in Figure 11 along
the iso-cost curve with slope $1.8/hour. We mark what cluster
configurations are forced to disk-spill for the join in each case.

We briefly discuss how to interpret the results. For Figure 11a
where the threshold is 120GB, we can see in Figure 10 that R1C4,
the cluster configuration that performs the best, is directly above
the cutoff, meaning it has the most vCPUs out of all cluster config-
urations that do not have to disk spill.

However, for a threshold of 150GB, the analogous cluster config-
uration R2C2 is outperformed by both R1C4 and C6, which use disk
spilling. The query in Listing 2 is impacted by disk spilling less than
the query in Listing 1, and the extra vCPUs overcome the benefits
of avoiding disk spills. This example suggests that for some queries,
there is a need for more accurate performance modeling than our
simple heuristic to obtain the most CPUs without disk spilling.

Another observation is that cluster configurations involving the
m6id.2xlarge (M) instance type are not among the top-performing
configurations in either case—see Figure 10. Note that for any valid
cluster configuration that includes an M instance, we can find a
configuration consisting of only R and C instances by finding its
horizontal or vertical projection onto the line connecting R3 and C6.
Examples are shown for the cluster configuration M4 and M2C3,
which suggests that the m6id.2xlarge instance type is not as cost
effective as the r6id.2xlarge and c6gd.2xlarge instance types in
terms of RAM or CPU.

A Model for Query Execution Over Heterogeneous Instances CIDR’24, January 14-17, 2024, Chaminade, USA

5 RELATEDWORK
Optimal VM Selection. Previous research has focused on optimiz-
ing VM cluster selection for analytical workloads to balance cost
reduction with performance requirements [4, 5, 9, 13, 21]. These
systems vary in terms of the approach adopted to determine the
optimal configuration (e.g. using Bayesian Optimization [4, 9]),
the execution of this approach (i.e., online vs. offline modeling),
and the type of data integrated into the model (e.g. coarse-grained
instance-level information, low-level metrics, etc.). These frame-
works, however, ultimately consider only clusters of one specific
instance type.

Heterogeneous Clusters. FineQuery and Selecta also consider
heterogeneous hardware for SQL queries. However, their focus is
on different storage devices or CPU-GPU, not different VM instance
types [11, 20]. Previous works, like KAIROS and OptimusCloud,
have also explored optimizing heterogeneous cloud resources for
non-SQL workloads like machine learning inference and key-value
stores [14, 15]. A related body of work has also explored using
heterogeneous clusters to exploit model parallelism in deep learn-
ing, where different layers in a deep learning model have different
resource requirements [10, 17]. Our work draws inspiration from
the findings in these systems.

6 CONCLUSION AND VISION
In this work, we show that using different instance types in the
same cluster can speed up query execution. We introduce iso-cost
curves, which offer a simple method to reason about the optimality
of a cluster configuration when optimizing query runtime with con-
straints on overall resources. We demonstrate that the key benefit
of cluster heterogeneity is expanding the space of total resources
available, leading to concrete performance benefits for the probe
phase of a pipelined join. We note three promising directions to
pursue for future work:

Different mapping strategies. While this paper focused on op-
timizing different cluster configurations, pipelined query engines
support different ways to execute a query given a fixed set of in-
stances. 3 Being able to quickly decide on the strategy given a query,
a query engine, and a cluster configuration is far from trivial. Tech-
niques employed in prior work such as Selecta and FineQuery could
be applied to this problem [11, 20].

Model-guided cluster configuration optimization. This paper
presented a heuristic for a given query pattern based on perfor-
mance benchmarking. It is impractical for practitioners to bench-
mark every query they encounter. A solution could be extensive
offline benchmarking of different query execution stages coupled
with a fast online cost-function-guided search for a new query. We
believe this approach, pioneered by FlexFlow for deep learning
problems, holds great promise in making heterogeneous clusters
practical for real query workloads [10].

3Assume we have a single join stage following a scan stage and two worker machines
with two executor slots per machine. The engine could assign one executor slot per
machine to each stage, the default strategy used in experiments in this paper, or assign
one machine completely to each stage.

Virtual clusters. In cases where a cluster manager like Kubernetes
is used, the question then becomes how to properly configure the
resource requirements of different pods used in a data processing
job. The per unit resource cost of a pod is much harder to reason
about than VM on-demand pricing, as it may involve business costs
of preempting other jobs. Heterogeneity is still interesting, as e.g.
using a mix of high and low-memory pods for a job might be easier
to schedule than uniformly mid-memory pods.

Vision. With the rise of serverless computing, we envision a future
where each query is executed on its own dedicated ephemeral
cluster. This scenario is not only plausible, but also appealing due
to its performance and security isolation properties. In such a future,
where clusters of varying resource configurations can be quickly
ordered on demand, the query engine must be able to express a
preference on what this cluster should look like for each query.
Being able to leverage heterogeneous clusters is necessary to take
full advantage of the flexibility public clouds provide, and is a key
step towards this goal.

REFERENCES
[1] [n. d.]. Databricks TPC-DS. https://www.tpc.org/results/fdr/tpcds/

databricks~tpcds~100000~databricks_sql_8.3~fdr~2021-11-02~v01.pdf. Accessed
on May 29, 2023.

[2] [n. d.]. Snowflake Debugging Info. https://stackoverflow.com/questions/
58973007/what-are-the-specifications-of-a-snowflake-server. Accessed on May
29, 2023.

[3] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
virtualization for serverless applications. In 17th USENIX symposium on networked
systems design and implementation (NSDI 20). 419–434.

[4] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. {CherryPick}: Adaptively unearthing the
best cloud configurations for big data analytics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). 469–482.

[5] Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues. 2020. Finding the
right cloud configuration for analytics clusters. In Proceedings of the 11th ACM
Symposium on Cloud Computing. 208–222.

[6] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and
Michael Andrews. 2016. The MemSQL Query Optimizer: A modern optimizer for
real-time analytics in a distributed database. Proceedings of the VLDB Endowment
9, 13 (2016), 1401–1412.

[7] Clickhouse. 2023. Clickhouse. https://github.com/ClickHouse/ClickHouse. Ac-
cessed on July 10, 2023.

[8] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
JianshengHuang, et al. 2016. The snowflake elastic data warehouse. In Proceedings
of the 2016 International Conference on Management of Data. 215–226.

[9] Chin-Jung Hsu, Vivek Nair, Vincent W Freeh, and Tim Menzies. 2018. Arrow:
Low-level augmented bayesian optimization for finding the best cloud vm. In 2018
IEEE 38th International Conference on Distributed Computing Systems (ICDCS).
IEEE, 660–670.

[10] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model
Parallelism for Deep Neural Networks. Proceedings of Machine Learning and
Systems 1 (2019), 1–13.

[11] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta: Heterogeneous
cloud storage configuration for data analytics. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). 759–773.

[12] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 743–754.

[13] Viktor Leis and Maximilian Kuschewski. 2021. Towards cost-optimal query
processing in the cloud. Proceedings of the VLDB Endowment 14, 9 (2021), 1606–
1612.

[14] Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2022. Building
Heterogeneous Cloud System for Machine Learning Inference. arXiv preprint
arXiv:2210.05889 (2022).

[15] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Subrata Mitra,
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020. {OPTIMUSCLOUD}:

https://www.tpc.org/results/fdr/tpcds/databricks~tpcds~100000~databricks_sql_8.3~fdr~2021-11-02~v01.pdf
https://www.tpc.org/results/fdr/tpcds/databricks~tpcds~100000~databricks_sql_8.3~fdr~2021-11-02~v01.pdf
https://stackoverflow.com/questions/58973007/what-are-the-specifications-of-a-snowflake-server
https://stackoverflow.com/questions/58973007/what-are-the-specifications-of-a-snowflake-server
https://github.com/ClickHouse/ClickHouse

CIDR’24, January 14-17, 2024, Chaminade, USA Ziheng Wang, Emanuel Adamiak, and Alex Aiken

Heterogeneous configuration optimization for distributed databases in the cloud.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20). 189–203.

[16] marsupialtail. 2023. Quokka. https://github.com/marsupialtail/quokka. Accessed
on July 10, 2023.

[17] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T Nguyen, Seungmin Lee,
Jaesik Choi, Sam H Noh, and Young-ri Choi. 2020. {HetPipe}: Enabling large
{DNN} training on (whimpy) heterogeneous {GPU} clusters through integration
of pipelined model parallelism and data parallelism. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). 307–321.

[18] Mark Raasveldt and Hannes Mühleisen. 2019. Duckdb: an embeddable analytical
database. In Proceedings of the 2019 International Conference on Management of
Data. 1981–1984.

[19] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al.
2019. Presto: SQL on everything. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 1802–1813.

[20] Dalin Wang, Feng Zhang, Weitao Wan, Hourun Li, and Xiaoyong Du. 2021.
FineQuery: Fine-grained query processing on CPU-GPU integrated architectures.
In 2021 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
355–365.

[21] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, Burton Smith, and
Randy H Katz. 2017. Selecting the best vm across multiple public clouds: A data-
driven performance modeling approach. In Proceedings of the 2017 Symposium on
Cloud Computing. 452–465.

https://github.com/marsupialtail/quokka

	Abstract
	1 Introduction
	2 What is Optimal?
	2.1 Pareto Optimality
	2.2 Iso-instance vs. Iso-cost Curves
	2.3 Heterogeneity = More Choice

	3 Why is More Choice Beneficial?
	3.1 Query and Query Engine
	3.2 A Concrete Example

	4 Experiments
	4.1 A More Complex Example

	5 Related Work
	6 Conclusion and Vision
	References

