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ABSTRACT 

The Yellowbrick Data Warehouse delivers efficient, scalable and 

resilient data warehousing in public clouds and in private data 

centers. The database management system is composed of a set of 

Kubernetes-orchestrated microservices. Kubernetes provides the 

single-source-of-truth for system configuration and state, and 

manages all data warehouse lifecycle operations, including the 

creation, expansion, contraction and destruction of elastic compute 

resources and shared services. The common runtime provided by 

Kubernetes enabled us to port to three different cloud providers in 

under a year. We created a SQL interface to Kubernetes to hide the 

details of the underlying microservices implementation from the 

end user. We also developed our own reliable network protocol 

based on the Data Plane Development Kit (DPDK) for efficient 

data exchange between nodes in the public cloud. In this paper, we 

provide an overview of Yellowbrick and its microservices approach 

to delivering elasticity, scalability and separation of compute and 

storage. We also describe the optimizations we have implemented 

in the operating system and in our software to drive efficiency and 

performance, supported by benchmark results. We conclude with 

lessons learned and discuss future developments. 

1 INTRODUCTION 

The data warehousing industry has witnessed significant change 

over the past ten years. Prior to 2010, enterprise data warehouses 

were rooted in the private data center, focused on delivering 

efficiency and performance within a fixed resource footprint. As 

public cloud adoption has increased, bringing with it essentially 

limitless compute and storage resources, a new breed of cloud data 

warehouse has entered the market, characterized by elasticity, 

separation of compute and storage, and a SaaS user experience [1–

3]. Over the same period, software development practices that 

combine container-based architectures with DevSecOps processes 

have grown in popularity, delivering software that is more scalable 

and resilient. Kubernetes [4] has become the de facto standard 

orchestration framework for containerized microservices. While 

several data warehouses advertise the ability to deploy on 

Kubernetes [5-7], none are composed from fine-grained 

microservices, and none provide a SQL interface to Kubernetes that 

abstracts configuration complexities from end users. 

2 OVERVIEW OF YELLOWBRICK 

Yellowbrick is an ACID-compliant, MPP SQL relational data 

warehouse with a design centered on delivering instant elasticity, 

scalability, performance, efficiency, high concurrency, and 

availability. Yellowbrick consists of three major components: the 

data warehouse manager, providing the control plane for 

provisioning multiple, separate data warehouse instances; a data 

warehouse instance, which manages a set of databases; and 

elastically scalable compute clusters which add compute capacity 

to a data warehouse instance for different workloads (Figure 1). 

In Yellowbrick, storage is separated from compute, and data is 

persisted in object storage as column-oriented, compressed files 

known as shards. Each compute node in a compute cluster has a 

locally attached NVMe (nonvolatile memory express) SSD-based 

shard cache to enhance query performance by caching shards read 

from object storage. 

Each compute cluster can scale from 1 node to 64 nodes in single 

node increments. We refer to the MPP process running on each 

compute node within a cluster as the worker. Compute clusters can 

be configured to suspend and resume automatically based on 

incoming query activity, freeing up or provisioning the underlying 

cloud compute resources required in the process. All databases 

managed by an instance are visible to each compute cluster. Up to 

3,000 workers can be attached to a single data warehouse instance, 

grouped into compute clusters. Users are assigned to one or more 

compute clusters, to which queries are submitted. In the case of 

assignment to multiple active compute clusters, an intelligent load 

balancer automatically routes to the one able to complete the query 

as fast as possible. 

The data warehouse manager is used to provision data warehouse 

instances. It provides a web-based user interface from which data 

warehouses can be created, monitored and destroyed. It is designed 

to provide a single pane of glass from within which an 

administrator can provision data warehouses in the cloud of their 

choice as well as on Yellowbrick hardware running in a private data 

center. 

Yellowbrick is designed to support multi-tenancy and runs within 

a customer’s own cloud service provider account, enabling them to 

manage their own data and procure their own cloud computing and 

storage infrastructure. A common multi-tenancy use case sees data 

warehouse instances provisioned by the company’s central IT 

department who act as a service provider to offer data warehousing 

as a service to different lines of business or even their own external 

customers. 
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Figure 1: Yellowbrick architecture 

2.1 Microservices Architecture 

Yellowbrick is composed of a set of microservices that collectively 

deliver the database management system functionality. The 

microservices are packaged as Linux container images, and 

Kubernetes provides container orchestration and resilience, 

ensuring the data warehouse is maintained in the desired state. If a 

microservice crashes, Kubernetes automatically creates a 

replacement, even provisioning the cloud infrastructure needed to 

support it if necessary. The portability provided by Kubernetes and 

the underlying container runtime enabled us to port Yellowbrick to 

three different public clouds in under a year. The microservices that 

constitute Yellowbrick are depicted in Figure 2.  

 

Figure 2: Yellowbrick microservices 

The data warehouse instance is the front-end microservice for the 

data warehouse. This microservice manages connections to the data 

warehouse, as well as query parsing, query plan caching, row store, 

metadata management and transaction management duties, and is 

deployed as a singleton StatefulSet pod. Compute intensive tasks, 

such as bulk data loading and query compilation, are delegated to 

horizontally scalable ReplicaSet pods. The data warehouse 

manager consists of a set of pods providing UI, authentication, 

monitoring, configuration management and workflow services. 

The data warehouse manager supports one or more data warehouse 

instances. 

Each compute node runs a single worker process deployed in a 

StatefulSet pod which is responsible for executing a portion of the 

query plan and managing the resources of the compute hardware. 

Each worker manages its own local storage which it uses as the 

shard file cache and for temporary spill space. New workers can be 

added or removed from a running compute cluster dynamically, and 

Kubernetes manages the process of spinning up new worker pods 

and new cloud hardware in response to changes to the cluster 

configuration. 

An important design goal of Yellowbrick was to abstract the details 

of the underlying Kubernetes implementation from the end user. To 

that end, we built a SQL interface over Kubernetes to make the 

management of compute clusters straightforward. From the SQL 

command line, or from an ODBC/JDBC client, users can create, 

alter, suspend, resume, select, or destroy compute clusters.  

For example, the directive to create a compute cluster follows the 

syntax:  

 

which creates a compute cluster with the specified number of 

workers, compute node type and workload management profile. 

The data warehouse instance parses the SQL directive and issues 

REST API calls to Kubernetes to provision the worker pods and 

compute nodes. We have also defined a number of system views 

whose base tables are populated directly by querying Kubernetes. 

These views provide information on cluster status, cluster events 

and configuration changes, including details of the user that made 

changes. 

2.2 Deployment Approach 

Another design goal was to make the process of deploying 

Yellowbrick as simple as possible. We wanted to provide an as-a-

service-like user experience, even if the user is deploying the data 

warehouse in their own data center or in their own public cloud 

account. Ensuring that an administrator never has to see or touch a 

Helm chart was a hard requirement. 

CREATE [OR REPLACE] CLUSTER [IF NOT EXISTS] 

<name> 

WITH  

    ( NODE_COUNT [=] <num> 

    HARDWARE_INSTANCE [=] <name> 

    WLM_PROFILE [=] <name> 

    [ AUTO_SUSPEND [=] <num> | NULL ] 

    [ AUTO_RESUME [=] TRUE | FALSE ] 

    [ MAX_SPILL_PCT [=] <num> | NULL ] 

    [ MAX_CACHE_PCT [=] <num> | NULL ] ); 
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Yellowbrick deployments in AWS are bootstrapped using the AWS 

CloudFormation service. The service provisions a VPC, load 

balancers, subnets, security groups and an Elastic Kubernetes 

Service cluster with autoscaling enabled, and then starts the data 

warehouse manager services. Container images are retrieved from 

the Elastic Container Registry automatically. Once the underlying 

cloud infrastructure has been created, data warehouse instances can 

be created from the data warehouse manager UI. 

At this point the workflow engine takes over behind the scenes to 

install a StatefulSet instance pod and ReplicaSet pods for the 

autoscaling compiler and bulk loader microservices in EKS. The 

required cloud compute instances are provisioned automatically by 

EKS autoscaling. Persistent volume claims are made to procure the 

necessary Elastic Block Storage volumes needed by the StatefulSet 

services. Then, via SQL or from the UI, compute clusters can be 

provisioned on EKS as described above.  

Destroying compute clusters follows the same pattern. SQL 

command line actions or UI-driven directives are used to remove 

pods, triggering the release of underlying public cloud resources. 

3 SOFTWARE OPTIMIZATIONS 

We have implemented efficiencies throughout the database 

management software and have deployed a large number of 

innovative “OS bypass” techniques to work around inefficiencies 

in the Linux operating system in storage, networking, memory 

management and scheduling. We have also automated many of the 

tasks that are usually associated with managing and maintaining a 

data warehouse.  

3.1 Database Optimizations 

Yellowbrick’s query engine implements the standard SQL 

optimizations and algorithms one would expect of an enterprise 

MPP data warehouse, such as parallel query plans, cost-based 

optimization, workload management and parallel query execution. 

Query plans are translated to C++ code and then compiled by the 

compiler microservice and distributed to the workers for parallel 

execution. Yellowbrick is designed to handle ad hoc, batch and near 

real-time workloads of complex joins, aggregations, single record 

lookups, inserts, updates and deletes—simultaneously—over 

petabytes of data.  

The SQL parser and planner are based on a fork of PostgreSQL 9.5. 

The query planner has been significantly modified compared to the 

original PostgreSQL planner, however the wire protocol and 

ODBC/JDBC drivers have been retained for reasons of ecosystem 

compatibility. Support is included for hash, sort-merge and loop 

joins as well as SQL rewrites for the pushdown, elimination, 

inference and simplification of predicates and joins. Cost 

estimation is used when planning joins, aggregates and scans. 

Primary and foreign key constraints declared in the database 

schema, while not used to enforce referential integrity in 

Yellowbrick, are used in join cardinality estimation along with 

statistics. Statistics are gathered and managed automatically using 

an implementation of the HyperLogLog algorithm [8].  

 

Figure 2: Query execution graph nodes are granted credits to 

process data. Credits flow downwards through the graph and 

data packets flow upwards 

Yellowbrick is a shared nothing database, and MPP workers 

address a portion of the underlying data following one of three data 

distribution strategies. Rows are allocated to workers based on hash 

values in a specified column, randomly, or are replicated across 

workers. The type of distribution is specified on a per-table basis in 

the database schema. Depending on the query execution plan, data 

may be distributed between workers over the network. 

Workers are comprised of an execution engine and a storage 

engine. The execution engine uses a credit-based flow control 

framework to govern the resources consumed by each query, 

constrained by the workload management rules that are in place. It 

also manages memory, threading, scheduling, communication with 

other workers, and the overall query lifecycle. The execution 

engine runs an object code instantiation of a query plan which is 

generated by LLVM inside the compilation microservice.  

The execution engine processes a query graph whose nodes map to 

nodes in the abstract query plan generated by the SQL planner, as 

illustrated in Figure 2. The nodes in the query graph are the 

operators—such as table scan, join or sort—and the edges 

connecting the operators are links. The graph approach allows us to 

plan and execute complex query topologies, such as a table scan 

that feeds multiple consumers of data simultaneously.  

At the start of query execution every thread on every worker is 

granted one credit. These credits are used to control the memory 

and temporary disk resources used by each query based on limits 

set by our workload management system. Credits flow down to the 

leaf nodes of the query graph and data packets flow up. Graph 

nodes can only process data packets if they possess a credit. Links 

in the graph manage connections between nodes; they account for 

credits and can distribute data packets to other threads, both 

synchronously and asynchronously. Leaf nodes are table scanning 

operators that read and filter data retrieved from storage. 

A side effect of this credit-based approach to flow control is that 

the distribution operator, which moves data packets across the 
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physical network between MPP workers, also uses the same flow 

control and backpressure approaches—in essence, extending the 

query execution graph to be global across workers. The network 

buffers are the data packets themselves and they can be transmitted 

and received in place with no data copying when using RDMA, and 

with only one data copy on receive when using UDP with DPDK. 

Flow control guarantees optimal use of memory and keeps data 

cache-resident wherever possible. 

Graph nodes execute in a cooperative fashion and cannot be 

interrupted against their will. Because multiple queries may be in 

progress on the execution engine on the same threads, graph nodes 

must explicitly yield control to enable the processing of other 

queries to proceed. 

It is optimal to process data in different ways depending on the type 

of graph node in question. The execution engine supports row-

oriented and column-oriented data packets. For example, the 

distribution node wants to operate in a row-oriented fashion 

because rows of data will be transmitted to different MPP workers 

depending on the hash of a column in the row. Likewise, the join 

node in the graph combines rows from two different tables and 

concatenates them. On the other hand, the table scanning node 

prefers to operate on columnar data straight from the storage 

engine, where it can take advantage of vectorized execution.  

Graph nodes can choose the type of data packet format on which 

they are able to work, and transpose nodes are injected into the 

execution plan to optimally rearrange data accordingly. For 

example, data is transposed from columns to rows when moving 

between a table scan node and join node. Data is transposed to 

columns from rows when tabular data is written to disk. 

The storage engine manages the column-oriented shard files. The 

table scanning leaf nodes in a query plan are executed by the 

storage engine. The query optimizer pushes filters down into the 

table scan, and the storage engine accepts conditions which will 

limit the rows and columns of the scan. These conditions are 

applied in the various phases of the scan to either skip a shard file 

entirely or skip components of it. Whole shards and parts of shards 

are skipped and filtered based on: filename, header and column 

metadata prior to decompression of actual values, and then after 

decompression with dynamically-created Bloom filters. In contrast 

to traditional sequential scans designed to optimize sequential disk 

reads, the storage engine drives millions of random IOPS to 

efficiently find only the data required. 

The storage engine reads column-oriented shard data from the local 

NVMe cache over the PCIe bus, decompresses, transposes and 

filters it using vectorized SIMD instructions, and then passes 

packets up the query execution graph. Data packets are 256 KB in 

size and are designed to fit into L3 cache. The storage engine 

employs a custom NVMe driver that uses our own memory 

allocation scheme and runs in user space to avoid kernel overhead 

when accessing the local NVMe cache. 

The execution engine is fully multi-core and NUMA-aware. 

Wherever possible, data packet processing is kept primarily core-

local and secondarily NUMA-node-local; but in the event of skew, 

reallocation of packets across cores on a NUMA node will take 

place first, followed by reallocation across NUMA nodes, if 

necessary. This affinity of data packets and operators to cores and 

NUMA nodes also extends across the MPP network. 

 

 

Figure 3: Query life cycle, illustrating the states that support 

restarting a query 

Each compute cluster can adopt a different, configurable workload 

management profile. In our workload management 

implementation, compute, memory and temporary storage 

resources are split across pools. Rules map incoming queries to a 

particular pool based on attributes including user, role, application, 

database, query tag, and others. Queries can be assigned different 

priorities, throttled, and automatically cancelled and restarted 

within a different pool if they exceed given limits. Pools can be 

configured to allow mixed workloads (e.g. data loads and queries) 

to run on the same compute cluster without the need to manually 

partition workloads across different clusters. We have measured 

rates as high as 20,000 queries per second through our workload 

management system. 

Figure 3 shows the life cycle of a query. Each query passes through 

several states while it is being prepared for execution, then it starts 

executing on the nodes in the compute cluster. Figure 3 identifies 

when queries can be cancelled or restarted by the workload 

management system based on the active rules. Once submitted, a 

query runs to completion, is cancelled, or fails with an error 

(DONE, CANCEL, and ERROR states). If a query is restarted or 

returns an error, it may re-enter the cycle in the ASSEMBLE state, 

but ultimately, all queries finish in one of the three completion 

states. 

As a query passes through each state in its life cycle, runtime 

statistics are captured and logged. These statistics provide a 

measure of the time spent in each phase of query execution, giving 

administrators a means of monitoring and analyzing query 

performance. Wait times and actual processing times are measured 

at each stage. 
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3.2 Operating System Optimizations 

For the sake of speed and efficiency, and to maximize time 

processing user data, Yellowbrick bypasses the Linux kernel for 

most system-level operations. The overall aim is to ensure that data 

read from NVMe SSDs is preserved in the CPU caches so that 

queries execute against data in the L3 cache rather than referencing 

main memory. To ensure this optimal data path is maintained we 

had to implement alternatives to the standard Linux memory 

management scheme and task scheduler. 

At start up, our memory manager takes over control of the system 

memory to avoid kernel swapping. Memory allocations are 

grouped by query lifetime to avoid memory fragmentation. We 

have measured the performance of our memory allocator to be 100x 

faster than standard Linux in its implementation, and it is largely 

lock-free. The design is NUMA-aware and memory is pinned to 

specific NUMA nodes. 

The memory allocator is initialized during initial setup of the C++ 

worker. All memory to be used by the allocator is mmaped in one 

contiguous virtual address region. The mmap request and 

subsequent analysis guarantee that the allocator only uses memory 

that is in either 2 MB or 1 GB HugePage blocks. The virtually 

contiguous HugePages need not be physically contiguous. The use 

of HugePages decreases the time required for the hardware to 

perform virtual-to-physical translation. These initial pages are 

mlocked, forcing them to remain in memory at their initial physical 

addresses. The memory allocator works entirely within this 

contiguous virtual address space. It leverages the contiguity to 

enable addressing with fewer bits, which saves space in the 

memory metadata storage. 

We also implemented our own task scheduler that runs in user space 

and is 500x faster than the regular Linux task scheduler. Our 

implementation can context switch between queries in ~100 

nanoseconds. The execution of a query is synchronized across a 

compute cluster so that every node is executing the same stage of 

the query plan at the same time. This helps to ensure that when data 

(re)distribution takes place, network queue depths do not build up 

to the extent that packets of rows end up in main memory instead 

of L3 cache.  

Yellowbrick is a cooperative multitasking system. Time is divided 

into synchronized centisecond slots across a compute cluster. Only 

one query is processed across the cluster during this time slot and 

every CPU on every worker is entirely devoted to executing the 

current plan node for that query during the slot. At the end of the 

slot duration, the scheduler switches to process another query. The 

scheduler understands different query priorities, favors new work 

over longer running queries and coordinates across nodes in the 

cluster. 

3.3 Networking Optimization using DPDK 

Low latency, high bandwidth data exchange between worker nodes 

in the public cloud uses the Data Plane Development Kit (DPDK) 

[9] to bypass the kernel network stack, avoid intermediate copies 

and system calls, and directly address the network device from 

within user space. We developed a network protocol on top of UDP 

to provide reliable, ordered packet delivery and minimize CPU 

overhead. Our DPDK-based implementation provides a significant 

query performance enhancement compared to using the TCP/IP-

based networking stack in Linux.  

The use of DPDK within the database industry is not new. 

ScyllaDB [10], a distributed database compatible with Apache 

Cassandra, offers user-space networking through DPDK via the 

open-source C++ framework, Seastar [11]. While Seastar 

implements TCP in user space, it does not consider reliability over 

datagram protocols. The perceived difficulties in implementation 

and the need to recreate much of the networking stack that Linux 

already provides have impeded the application of DPDK in MPP 

database management systems to date. 

In our implementation, DPDK is configured such that each vCPU 

thread on a worker connects to a corresponding vCPU thread on a 

different worker. Each thread has its own receive and transmit 

queues which are polled asynchronously. Receive side scaling is 

enabled to route packets between threads on a worker that share the 

same network interface card. 

It is worth noting that, from our prior experiments, running DPDK 

inside a container does not impact performance versus running 

outside a container. A virtual function on a Single Root I/O 

Virtualization-enabled (SR-IOV) network interface card can be 

called directly from within a container. All major cloud providers 

offer access to such enhanced networking capabilities and allow 

multiple network interfaces to be attached to the same Kubernetes 

pod. 

Cluster Size Runtime 

with TCP 

Runtime 

with DPDK 

Speedup due 

to DPDK 

2 2430s 1976s 19% 

3 1626s 1358s 17% 

4 1222s 995s 19% 

Table 1: Sequential runtime of the 99 TPC-DS queries at 1 TB 

scale versus compute cluster size and network implementation 

To illustrate the impact of DPDK on query performance, we 

executed a benchmark using the industry-standard TPC-DS [12] 

workload on Yellowbrick running in AWS. The Yellowbrick 

software can be configured to use either DPDK with our custom 

network protocol or TCP/IP. We performed a sequential run of the 

99 SQL queries from the TPC-DS benchmark at the 1 TB scale. 

The benchmarking procedure followed [13] allows us to compare 

Yellowbrick performance with the published performance of other 

data warehouse platforms for this benchmark. In accordance with 

the benchmarking procedure, no tuning of the queries, the schema 

or the data was performed. From a data distribution perspective, 

rows are randomly allocated to the compute nodes rather than 

following a hash-based distribution strategy to maximize the 

volume of data exchanged between workers. 

The total sequential runtime of the 99 TPC-DS queries is given in 

Table 1, utilizing TCP/IP and DPDK with our custom protocol for 

different compute cluster sizes. Over the entire sequential run, the 

compute nodes in the cluster exchange approximately 1.5 TB of 

data across the network. 
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The AWS EC2 instance type used in each cluster is the i4i.4xlarge, 

which provides a network bandwidth of up to 25 Gbps, a single 

3.75 TB NVMe SSD drive and 128 GB of DRAM. DPDK utilizes 

two Elastic Network Adapters (ENA) on this node type, with 8 

receive and transmit queues per ENA and each queue pair mapped 

to each of the 16 vCPUs. 

From Table 1, the use of DPDK boosts the performance of this 

workload by almost 20%. The impact of the exchange of data 

between MPP workers during query execution is only one factor 

determining the runtime of a query. The runtime is also influenced 

by overall query complexity, the query plan chosen by the cost-

based optimizer and storage I/O bandwidth.  

Understanding the role of these other factors in query performance 

requires analysis of individual query runtimes. The improvement in 

individual query runtime as a function of the data exchanged 

between workers is illustrated in Figure 4 for a cluster with 4 

workers. 

 

Figure 4: Runtime improvement of the 99 TPC-DS queries with 

DPDK vs TCP/IP as a function of data exchanged over the 

network for a 4-node compute cluster (semi-log x-axis) 

The performance gains due to DPDK are correlated with volume of 

data exchanged between MPP nodes during the execution of a 

query, with the lowest gains associated with queries that exchange 

the least data. However, even queries that exchange a relatively 

modest amount of data can see significant performance increases 

due to kernel bypass and zero copy. 

Cluster Size Q50 Runtime 

with TCP/IP 

Q50 Runtime 

with DPDK 

Q50 Speedup 

with DPDK 

2 74s 52s 29% 

3 51s 15s 71% 

4 30s 10s 66% 

Table 2: Runtime of TPC-DS query 50 at the 1 TB scale as a 

function of compute cluster size and network implementation 

The outlier, Q50, highlights the role query complexity plays in 

dictating the runtime improvement gained from DPDK (Table 2). 

Q50 demonstrated the largest improvement in execution time. The 

runtime for this query is dominated by the time taken to exchange 

rows over the network between workers during the hash join of two 

of the largest tables in the data set, containing 2.9 billion and 288 

million records respectively. The nodes exchange ~100 GB during 

the execution of this query. 

From Table 2, DPDK provides a 65-70% boost to the performance 

of Q50 for the two largest cluster sizes. The lower impact on 

performance in the case of the 2-node cluster can be attributed to 

network and local NVMe SSD storage bandwidth saturation.  

3.4 Storage Optimizations 

Most modern data warehouse implementations are backed by 

column stores [14]. While this approach can result in high data 

compression and good performance when querying a limited 

number of fields in a table, it is compromised in its ability to 

support efficient operations on single records. We opted for a 

hybrid storage engine design that combines a front-end row store 

and a back-end column store. The row store is managed by the data 

warehouse instance microservice. 

From a query perspective, a table with data spanning both the row 

store and column store appears as a single logical table. Data can 

be inserted into the row store on a record-by-record basis at high 

speed and is instantly accessible. Rows are automatically flushed 

into the column store over time. Bulk loads of large amounts of data 

are inserted directly into the column store via parallel connections 

to the workers, bypassing the row store. 

ACID properties are preserved across the row and column store by 

using a common transaction log with a “read committed” level of 

isolation and multi-version concurrency control. Shard files are 

immutable, and deleted records are tracked through the presence of 

side files containing bitmaps that mask the deleted rows in their 

respective shard. Shard files and deletion files are merged 

periodically to create new shard files. 

Workers read data in 256 KB blocks from the object store and cache 

them locally on NVMe SSDs using a mixed strategy of single block 

reads and prefetching. This read block size provided reasonable 

tradeoffs between read IOPS, throughput and NVMe cache 

efficiency in our experiments with AWS S3.  

A variant of the standard LRU policy providing basic scan 

resistance (newly inserted pages are placed further down the list, 

and only promoted to the head on second access) governs NVMe 

cache eviction. In the case of data loading, records are persisted 

directly in object storage while workers notify each other of 

changes to shard file ownership that will affect their caches. 

Following compute cluster resize, shard file ownership amongst the 

workers is reallocated using Rendevous hashing [15]. During query 

execution, data is read from the NVMe cache in blocks of 32 KB 

or less across the PCIe lanes into L3 CPU cache. 

Shard files are ~100 MB in size and are transactionally written to 

the object store in 2 MB blocks. Each block is written with a single 

PUT operation. Data committed to Yellowbrick is written around 

the NVMe cache and into object storage; the cache is only 

populated through read operations. Experiments performed on 

AWS S3 indicate 2 MB writes provide the optimal bandwidth and 

throughput for our use case. 

We implemented our own C++ S3 connection library [16] to 

support deployments on AWS. The connection library is used by 
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the workers to read and write shard files to S3 buckets. We found 

the standard AWS C++ S3 client library to be somewhat inefficient. 

Our library delivers 3x the throughput, saturates the network, and 

uses a fraction of the CPU compared to the AWS implementation. 

Performance and efficiency gains were realized by greatly reducing 

the number of data copies and memory allocations, pipelining 

HTTP/HTTPS requests, and through prudent socket management. 

4 PERFORMANCE COMPARISON 

In Table 3, we compare our TPC-DS 1 TB timings and costs when 

deployed on AWS with results published for other data warehouse 

platforms [13]. The configuration of each platform was selected 

based on a broadly similar hourly cost [13]. 

Platform Configuration Total 

Runtime 

Relative 

Runtime 

Cost per 

hour 

Yellowbrick 4x i4i.4xlarge 995s 1 $8.42 

Snowflake Medium 2690s 2.7 $8.00 

Redshift 3x ra3.4xlarge 3199s 3.2 $9.78 

BigQuery 300 Slots 2298s 2.3 $8.22 

Synapse DW500c 4846s 4.9 $6.00 

Databricks 4x i3.2xlarge 2974s 3.0 $7.22 

Table 3: Comparison of the sequential total runtimes of the 99 

TPC-DS queries at the 1 TB scale across competing data 

warehouse platforms 

As in Section 3.3, we followed the same methodology when 

executing the benchmark on Yellowbrick, first warming the NVMe 

SSD caches on each compute node by running a full table scan for 

each table in the schema, and then timing one sequential run 

through the 99 SQL queries in the benchmark. No modifications to 

the published [13] TPC-DS queries or schema were made. For these 

configurations, a 4-node Yellowbrick cluster executes the TPC-DS 

1 TB workload 2-5x faster than the other platforms. 

The relative cost per query is an important normalizing metric since 

it accounts for both the price and the performance of each platform. 

The optimizations described in the previous sections result in cost 

savings of 2-3x over the other platforms based this synthetic 

benchmark (Figure 5). 

An interesting, but not surprising, feature of Figure 5 is how similar 

in price-performance terms the other data warehouse platforms are 

to each other, excluding Yellowbrick. After all, most modern data 

warehouse platforms incorporate the same standard SQL and 

database software optimization techniques, such as automated SQL 

rewrites, cost-based optimization, caching, SIMD operations, 

columnar storage and zone maps. They are also running on similar 

public cloud hardware. To differentiate in the market in terms of 

price-performance, we believe that a data warehouse platform must 

optimize in the Linux kernel to tailor low-level operations to meet 

the requirements of data warehouse workloads. 

 

Figure 5: Relative cost per query across the platforms listed in 

Table 3 for the TPC-DS benchmark at 1 TB scale 

4.1 Scaling Compute and Data 

We characterized the scaling capabilities of Yellowbrick by 

performing sequential runs of the TPC-DS queries against different 

scale factors and compute cluster sizes (Figure 6). The total runtime 

remains approximately the same for a given ratio of data to node 

count as the data volume increases from 3 TB to 100 TB.  

 

Figure 6: Runtime scaling as a function of compute cluster size 

and data set size (3 TB to 100 TB) for the TPC-DS benchmark 

Data set  Configuration Total  

Runtime 

Cost per TB 

per run 

3 TB 2x i4i.4xlarge 5430s $2.72 

10 TB 6x i4i.4xlarge 5451s $2.04 

30 TB 20x i4i.4xlarge 5036s $1.94 

100 TB 60x i4i.4xlarge 6071s $2.06 

Table 4: Price-performance per TB per sequential run of the 

TPC-DS queries over varying data volumes and compute 

cluster sizes 
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The linear scaling of price-performance is shown in Table 4. The 

results demonstrate that Yellowbrick will scale predictably from a 

price-performance perspective as data volumes and workloads 

grow. 

4.2 Concurrency Scaling 

We also performed measurements of the concurrency scaling 

characteristics of Yellowbrick. For these tests we used the 1 TB 

TPC-DS data set and workload. Each compute cluster has a 

maximum concurrency limit of 100 queries. Workloads that exceed 

this limit are queued. The concurrency limit can be configured 

through a workload management profile and so trade-offs can be 

made between the degree of concurrency and the memory and 

temporary spill space available to each query on a per cluster basis. 

We configured a 20-node cluster of i4i.4xlarge EC2 instances with 

64 concurrency lanes and ran 1, 2, 4, 8, 16, 32 and 64 parallel 

streams of the 99 TPC-DS queries in turn. Each stream executed a 

random sequence of the 99 queries. 

 

Figure 7: Relative TPC-DS workload runtime and query 

throughput for a varying number of concurrent streams using 

a 20-node i4i.4xlarge cluster with data at the 1 TB scale factor 

Yellowbrick’s workload management scheme does not reserve 

CPU capacity for each lane a query runs in. If only one query is 

running on a cluster then the query is allocated all the available 

CPU in the cluster. As more queries are submitted, CPU is allocated 

to queries depending on their relative priority which can be set 

through workload management rules. In the case of equal priority, 

one would therefore expect the time taken to execute the same 

query concurrently in two lanes would be double the runtime of the 

query running on its own.  

Figure 7 shows the runtime relative to a sequential run of the 99 

TPC-DS queries for different degrees of concurrency on a 20-node 

cluster. As expected, the runtime doubles as the degree of 

concurrency doubles. Yellowbrick’s actual concurrency scaling is 

better than linear for this workload, likely due to data sharing 

between concurrent queries in different lanes accessing data 

already present in the CPU caches. Note also that the query 

throughput remains consistent across increasing degrees of 

concurrency, again ensuring predictable price-performance as 

workload volumes increase. 

We extended the testing to examine the impact on runtime and 

query throughput with different cluster sizes while maintaining the 

degree of concurrency at 64 streams (Table 5).  

For 64 concurrent query streams, increasing the size of the cluster 

decreases the runtime and increases the query throughput, albeit 

with diminishing returns for this level of concurrency and 

workload. 

Configuration Query  

Streams 

Query 

Count 

Total  

Runtime 

Relative  

Runtime 
QPS 

10xi4i.4xlarge 64 6336 29174s 1.0 0.22 

20xi4i.4xlarge 64 6336 19011s 0.7 0.33 

30xi4i.4xlarge 64 6336 16110s 0.6 0.39 

Table 5: TPC-DS workload runtime and query throughput for 

64 concurrent streams for a 10, 20 and 30-node i4i.4xlarge 

cluster with data at the 1 TB scale factor 

4.3 Multi-cluster Scaling 

The concurrency and the scaling characteristics for a single 

compute cluster depend on the complexity and resource 

requirements of the workload. To avoid queuing queries on a single 

cluster, and to scale query concurrency linearly, our customers can 

take advantage of Yellowbrick’s in-built query load balancer to 

distribute queries across more than one cluster. The load balancer 

allocates in-bound queries across clusters on a least-busy basis.  

We extended our scaling tests from Section 4.2 to demonstrate the 

additional query concurrency and throughput that can be obtained 

by distributing workloads automatically over more than one 

compute cluster using the load balancing mechanism. In this 

experiment, we added a second and third cluster of 20-nodes 

alongside the original 20-node cluster, increasing the concurrency 

level to 128 streams and then to 196 streams of randomly ordered 

TPC-DS queries. 

Cluster 

Count 

Query 

Streams 

Query 

Count 

Total  

Runtime 

Relative  

Runtime 

QPS 

1 64 6336 19011s 1.0 0.33 

2 128 12672 19116s 1.0 0.66 

3 192 19008 18949s 1.0 1.00 

Table 6: TPC-DS workload runtime and query throughput for 

64, 128 and 192 concurrent streams using load-balanced multi-

cluster configurations (20 compute nodes per cluster) with data 

at the 1 TB scale factor 

Table 6 shows that when the workload is shared across multiple 

compute clusters, the query throughput increases linearly as the 

degree of query concurrency increases linearly. 
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A common pattern our customers follow is to define a single cluster 

configuration that satisfies the performance requirements for a 

certain number of users, and then add additional clusters following 

this sizing template as their user community and business grows. 

The load balancer ensures that applications are oblivious to multi-

cluster expansions. Our customers can start small with as little as a 

one node compute cluster, expand this cluster node-by-node, and 

then add more clusters as needed. 

5 CONCLUSIONS AND FURTHER WORK 

Yellowbrick’s adoption of Kubernetes as the orchestration and 

platform-agnostic runtime enables it to deliver a modern data 

warehouse that runs anywhere. Kubernetes does the heavy lifting 

when it comes to managing the lifecycle of the data warehouse, 

providing elasticity, availability, and scalability. The delegation of 

infrastructure responsibility to Kubernetes has allowed us to focus 

on the core business of enhancing database performance and adding 

new features. Work to optimize our database software, the network 

protocols and in the kernel has not been impeded by Kubernetes. 

We are still able to efficiently access low level devices such as 

NVMe SSDs and network interface cards even in virtualized public 

cloud environments.  

The optimizations implemented to reduce OS kernel overhead in 

Yellowbrick contribute significant performance benefits. As our 

benchmarks show, using a custom network protocol based on 

DPDK for the exchange of data between MPP nodes alone reduces 

the runtime of some queries by as much as 70% in the public cloud. 

We also demonstrated how Yellowbrick scales linearly along 

dimensions including: compute cluster size, number of compute 

clusters, data volume, and degree of query concurrency. The 

implication of these results is that the price-performance of 

Yellowbrick can be reliably predicted, and customers can be 

confident that Yellowbrick will scale as their business grows.    

As a next step, we are investigating the impact of compression on 

networking performance. Initial results indicate a 50% reduction in 

network data volume with lz4 compression. We are also evaluating 

the performance impact of offloading the compression overhead to 

the network interface card. 

Additional performance improvements in progress include: 

extending our range-based filtering to support multiple ranges per 

column; support for more complex Bloom filter expressions and the 

selective application of filters based on cost; and further automated 

SQL query rewrites in the planner. In our testing, manual tuning of 

the TPC-DS queries results in a further 2x speedup for this 

workload on Yellowbrick. However, tuning our query planner to 

perform well against this artificial workload is low on our priority 

list. 
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