
Yellowbrick: An Elastic Data Warehouse on Kubernetes

Mark Cusack, John Adamson, Mark Brinicombe, Neil Carson,

Thomas Kejser, Jim Peterson, Arvind Vasudev, Kurt Westerfeld, Robert Wipfel
Yellowbrick Data

 Mountain View, California, USA
 firstname.lastname@yellowbrick.com

ABSTRACT

The Yellowbrick Data Warehouse delivers efficient, scalable and

resilient data warehousing in public clouds and in private data

centers. The database management system is composed of a set of

Kubernetes-orchestrated microservices. Kubernetes provides the

single-source-of-truth for system configuration and state, and

manages all data warehouse lifecycle operations, including the

creation, expansion, contraction and destruction of elastic compute

resources and shared services. The common runtime provided by

Kubernetes enabled us to port to three different cloud providers in

under a year. We created a SQL interface to Kubernetes to hide the

details of the underlying microservices implementation from the

end user. We also developed our own reliable network protocol

based on the Data Plane Development Kit (DPDK) for efficient

data exchange between nodes in the public cloud. In this paper, we

provide an overview of Yellowbrick and its microservices approach

to delivering elasticity, scalability and separation of compute and

storage. We also describe the optimizations we have implemented

in the operating system and in our software to drive efficiency and

performance, supported by benchmark results. We conclude with

lessons learned and discuss future developments.

1 INTRODUCTION

The data warehousing industry has witnessed significant change

over the past ten years. Prior to 2010, enterprise data warehouses

were rooted in the private data center, focused on delivering

efficiency and performance within a fixed resource footprint. As

public cloud adoption has increased, bringing with it essentially

limitless compute and storage resources, a new breed of cloud data

warehouse has entered the market, characterized by elasticity,

separation of compute and storage, and a SaaS user experience [1–

3]. Over the same period, software development practices that

combine container-based architectures with DevSecOps processes

have grown in popularity, delivering software that is more scalable

and resilient. Kubernetes [4] has become the de facto standard

orchestration framework for containerized microservices. While

several data warehouses advertise the ability to deploy on

Kubernetes [5-7], none are composed from fine-grained

microservices, and none provide a SQL interface to Kubernetes that

abstracts configuration complexities from end users.

2 OVERVIEW OF YELLOWBRICK

Yellowbrick is an ACID-compliant, MPP SQL relational data

warehouse with a design centered on delivering instant elasticity,

scalability, performance, efficiency, high concurrency, and

availability. Yellowbrick consists of three major components: the

data warehouse manager, providing the control plane for

provisioning multiple, separate data warehouse instances; a data

warehouse instance, which manages a set of databases; and

elastically scalable compute clusters which add compute capacity

to a data warehouse instance for different workloads (Figure 1).

In Yellowbrick, storage is separated from compute, and data is

persisted in object storage as column-oriented, compressed files

known as shards. Each compute node in a compute cluster has a

locally attached NVMe (nonvolatile memory express) SSD-based

shard cache to enhance query performance by caching shards read

from object storage.

Each compute cluster can scale from 1 node to 64 nodes in single

node increments. We refer to the MPP process running on each

compute node within a cluster as the worker. Compute clusters can

be configured to suspend and resume automatically based on

incoming query activity, freeing up or provisioning the underlying

cloud compute resources required in the process. All databases

managed by an instance are visible to each compute cluster. Up to

3,000 workers can be attached to a single data warehouse instance,

grouped into compute clusters. Users are assigned to one or more

compute clusters, to which queries are submitted. In the case of

assignment to multiple active compute clusters, an intelligent load

balancer automatically routes to the one able to complete the query

as fast as possible.

The data warehouse manager is used to provision data warehouse

instances. It provides a web-based user interface from which data

warehouses can be created, monitored and destroyed. It is designed

to provide a single pane of glass from within which an

administrator can provision data warehouses in the cloud of their

choice as well as on Yellowbrick hardware running in a private data

center.

Yellowbrick is designed to support multi-tenancy and runs within

a customer’s own cloud service provider account, enabling them to

manage their own data and procure their own cloud computing and

storage infrastructure. A common multi-tenancy use case sees data

warehouse instances provisioned by the company’s central IT

department who act as a service provider to offer data warehousing

as a service to different lines of business or even their own external

customers.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2024. 14th Annual Conference

on Innovative Data Systems Research (CIDR '24). January 14-17, 2024, Chaminade,

USA.

CIDR '24, January, 2024, Chaminade, USA ➢ M. Cusack et al.

Figure 1: Yellowbrick architecture

2.1 Microservices Architecture

Yellowbrick is composed of a set of microservices that collectively

deliver the database management system functionality. The

microservices are packaged as Linux container images, and

Kubernetes provides container orchestration and resilience,

ensuring the data warehouse is maintained in the desired state. If a

microservice crashes, Kubernetes automatically creates a

replacement, even provisioning the cloud infrastructure needed to

support it if necessary. The portability provided by Kubernetes and

the underlying container runtime enabled us to port Yellowbrick to

three different public clouds in under a year. The microservices that

constitute Yellowbrick are depicted in Figure 2.

Figure 2: Yellowbrick microservices

The data warehouse instance is the front-end microservice for the

data warehouse. This microservice manages connections to the data

warehouse, as well as query parsing, query plan caching, row store,

metadata management and transaction management duties, and is

deployed as a singleton StatefulSet pod. Compute intensive tasks,

such as bulk data loading and query compilation, are delegated to

horizontally scalable ReplicaSet pods. The data warehouse

manager consists of a set of pods providing UI, authentication,

monitoring, configuration management and workflow services.

The data warehouse manager supports one or more data warehouse

instances.

Each compute node runs a single worker process deployed in a

StatefulSet pod which is responsible for executing a portion of the

query plan and managing the resources of the compute hardware.

Each worker manages its own local storage which it uses as the

shard file cache and for temporary spill space. New workers can be

added or removed from a running compute cluster dynamically, and

Kubernetes manages the process of spinning up new worker pods

and new cloud hardware in response to changes to the cluster

configuration.

An important design goal of Yellowbrick was to abstract the details

of the underlying Kubernetes implementation from the end user. To

that end, we built a SQL interface over Kubernetes to make the

management of compute clusters straightforward. From the SQL

command line, or from an ODBC/JDBC client, users can create,

alter, suspend, resume, select, or destroy compute clusters.

For example, the directive to create a compute cluster follows the

syntax:

which creates a compute cluster with the specified number of

workers, compute node type and workload management profile.

The data warehouse instance parses the SQL directive and issues

REST API calls to Kubernetes to provision the worker pods and

compute nodes. We have also defined a number of system views

whose base tables are populated directly by querying Kubernetes.

These views provide information on cluster status, cluster events

and configuration changes, including details of the user that made

changes.

2.2 Deployment Approach

Another design goal was to make the process of deploying

Yellowbrick as simple as possible. We wanted to provide an as-a-

service-like user experience, even if the user is deploying the data

warehouse in their own data center or in their own public cloud

account. Ensuring that an administrator never has to see or touch a

Helm chart was a hard requirement.

CREATE [OR REPLACE] CLUSTER [IF NOT EXISTS]

<name>

WITH

 (NODE_COUNT [=] <num>

 HARDWARE_INSTANCE [=] <name>

 WLM_PROFILE [=] <name>

 [AUTO_SUSPEND [=] <num> | NULL]

 [AUTO_RESUME [=] TRUE | FALSE]

 [MAX_SPILL_PCT [=] <num> | NULL]

 [MAX_CACHE_PCT [=] <num> | NULL]);

Yellowbrick: An Elastic Data Warehouse on Kubernetes CIDR '24, January, 2024, Chaminade, USA

Yellowbrick deployments in AWS are bootstrapped using the AWS

CloudFormation service. The service provisions a VPC, load

balancers, subnets, security groups and an Elastic Kubernetes

Service cluster with autoscaling enabled, and then starts the data

warehouse manager services. Container images are retrieved from

the Elastic Container Registry automatically. Once the underlying

cloud infrastructure has been created, data warehouse instances can

be created from the data warehouse manager UI.

At this point the workflow engine takes over behind the scenes to

install a StatefulSet instance pod and ReplicaSet pods for the

autoscaling compiler and bulk loader microservices in EKS. The

required cloud compute instances are provisioned automatically by

EKS autoscaling. Persistent volume claims are made to procure the

necessary Elastic Block Storage volumes needed by the StatefulSet

services. Then, via SQL or from the UI, compute clusters can be

provisioned on EKS as described above.

Destroying compute clusters follows the same pattern. SQL

command line actions or UI-driven directives are used to remove

pods, triggering the release of underlying public cloud resources.

3 SOFTWARE OPTIMIZATIONS

We have implemented efficiencies throughout the database

management software and have deployed a large number of

innovative “OS bypass” techniques to work around inefficiencies

in the Linux operating system in storage, networking, memory

management and scheduling. We have also automated many of the

tasks that are usually associated with managing and maintaining a

data warehouse.

3.1 Database Optimizations

Yellowbrick’s query engine implements the standard SQL

optimizations and algorithms one would expect of an enterprise

MPP data warehouse, such as parallel query plans, cost-based

optimization, workload management and parallel query execution.

Query plans are translated to C++ code and then compiled by the

compiler microservice and distributed to the workers for parallel

execution. Yellowbrick is designed to handle ad hoc, batch and near

real-time workloads of complex joins, aggregations, single record

lookups, inserts, updates and deletes—simultaneously—over

petabytes of data.

The SQL parser and planner are based on a fork of PostgreSQL 9.5.

The query planner has been significantly modified compared to the

original PostgreSQL planner, however the wire protocol and

ODBC/JDBC drivers have been retained for reasons of ecosystem

compatibility. Support is included for hash, sort-merge and loop

joins as well as SQL rewrites for the pushdown, elimination,

inference and simplification of predicates and joins. Cost

estimation is used when planning joins, aggregates and scans.

Primary and foreign key constraints declared in the database

schema, while not used to enforce referential integrity in

Yellowbrick, are used in join cardinality estimation along with

statistics. Statistics are gathered and managed automatically using

an implementation of the HyperLogLog algorithm [8].

Figure 2: Query execution graph nodes are granted credits to

process data. Credits flow downwards through the graph and

data packets flow upwards

Yellowbrick is a shared nothing database, and MPP workers

address a portion of the underlying data following one of three data

distribution strategies. Rows are allocated to workers based on hash

values in a specified column, randomly, or are replicated across

workers. The type of distribution is specified on a per-table basis in

the database schema. Depending on the query execution plan, data

may be distributed between workers over the network.

Workers are comprised of an execution engine and a storage

engine. The execution engine uses a credit-based flow control

framework to govern the resources consumed by each query,

constrained by the workload management rules that are in place. It

also manages memory, threading, scheduling, communication with

other workers, and the overall query lifecycle. The execution

engine runs an object code instantiation of a query plan which is

generated by LLVM inside the compilation microservice.

The execution engine processes a query graph whose nodes map to

nodes in the abstract query plan generated by the SQL planner, as

illustrated in Figure 2. The nodes in the query graph are the

operators—such as table scan, join or sort—and the edges

connecting the operators are links. The graph approach allows us to

plan and execute complex query topologies, such as a table scan

that feeds multiple consumers of data simultaneously.

At the start of query execution every thread on every worker is

granted one credit. These credits are used to control the memory

and temporary disk resources used by each query based on limits

set by our workload management system. Credits flow down to the

leaf nodes of the query graph and data packets flow up. Graph

nodes can only process data packets if they possess a credit. Links

in the graph manage connections between nodes; they account for

credits and can distribute data packets to other threads, both

synchronously and asynchronously. Leaf nodes are table scanning

operators that read and filter data retrieved from storage.

A side effect of this credit-based approach to flow control is that

the distribution operator, which moves data packets across the

CIDR '24, January, 2024, Chaminade, USA ➢ M. Cusack et al.

physical network between MPP workers, also uses the same flow

control and backpressure approaches—in essence, extending the

query execution graph to be global across workers. The network

buffers are the data packets themselves and they can be transmitted

and received in place with no data copying when using RDMA, and

with only one data copy on receive when using UDP with DPDK.

Flow control guarantees optimal use of memory and keeps data

cache-resident wherever possible.

Graph nodes execute in a cooperative fashion and cannot be

interrupted against their will. Because multiple queries may be in

progress on the execution engine on the same threads, graph nodes

must explicitly yield control to enable the processing of other

queries to proceed.

It is optimal to process data in different ways depending on the type

of graph node in question. The execution engine supports row-

oriented and column-oriented data packets. For example, the

distribution node wants to operate in a row-oriented fashion

because rows of data will be transmitted to different MPP workers

depending on the hash of a column in the row. Likewise, the join

node in the graph combines rows from two different tables and

concatenates them. On the other hand, the table scanning node

prefers to operate on columnar data straight from the storage

engine, where it can take advantage of vectorized execution.

Graph nodes can choose the type of data packet format on which

they are able to work, and transpose nodes are injected into the

execution plan to optimally rearrange data accordingly. For

example, data is transposed from columns to rows when moving

between a table scan node and join node. Data is transposed to

columns from rows when tabular data is written to disk.

The storage engine manages the column-oriented shard files. The

table scanning leaf nodes in a query plan are executed by the

storage engine. The query optimizer pushes filters down into the

table scan, and the storage engine accepts conditions which will

limit the rows and columns of the scan. These conditions are

applied in the various phases of the scan to either skip a shard file

entirely or skip components of it. Whole shards and parts of shards

are skipped and filtered based on: filename, header and column

metadata prior to decompression of actual values, and then after

decompression with dynamically-created Bloom filters. In contrast

to traditional sequential scans designed to optimize sequential disk

reads, the storage engine drives millions of random IOPS to

efficiently find only the data required.

The storage engine reads column-oriented shard data from the local

NVMe cache over the PCIe bus, decompresses, transposes and

filters it using vectorized SIMD instructions, and then passes

packets up the query execution graph. Data packets are 256 KB in

size and are designed to fit into L3 cache. The storage engine

employs a custom NVMe driver that uses our own memory

allocation scheme and runs in user space to avoid kernel overhead

when accessing the local NVMe cache.

The execution engine is fully multi-core and NUMA-aware.

Wherever possible, data packet processing is kept primarily core-

local and secondarily NUMA-node-local; but in the event of skew,

reallocation of packets across cores on a NUMA node will take

place first, followed by reallocation across NUMA nodes, if

necessary. This affinity of data packets and operators to cores and

NUMA nodes also extends across the MPP network.

Figure 3: Query life cycle, illustrating the states that support

restarting a query

Each compute cluster can adopt a different, configurable workload

management profile. In our workload management

implementation, compute, memory and temporary storage

resources are split across pools. Rules map incoming queries to a

particular pool based on attributes including user, role, application,

database, query tag, and others. Queries can be assigned different

priorities, throttled, and automatically cancelled and restarted

within a different pool if they exceed given limits. Pools can be

configured to allow mixed workloads (e.g. data loads and queries)

to run on the same compute cluster without the need to manually

partition workloads across different clusters. We have measured

rates as high as 20,000 queries per second through our workload

management system.

Figure 3 shows the life cycle of a query. Each query passes through

several states while it is being prepared for execution, then it starts

executing on the nodes in the compute cluster. Figure 3 identifies

when queries can be cancelled or restarted by the workload

management system based on the active rules. Once submitted, a

query runs to completion, is cancelled, or fails with an error

(DONE, CANCEL, and ERROR states). If a query is restarted or

returns an error, it may re-enter the cycle in the ASSEMBLE state,

but ultimately, all queries finish in one of the three completion

states.

As a query passes through each state in its life cycle, runtime

statistics are captured and logged. These statistics provide a

measure of the time spent in each phase of query execution, giving

administrators a means of monitoring and analyzing query

performance. Wait times and actual processing times are measured

at each stage.

Yellowbrick: An Elastic Data Warehouse on Kubernetes CIDR '24, January, 2024, Chaminade, USA

3.2 Operating System Optimizations

For the sake of speed and efficiency, and to maximize time

processing user data, Yellowbrick bypasses the Linux kernel for

most system-level operations. The overall aim is to ensure that data

read from NVMe SSDs is preserved in the CPU caches so that

queries execute against data in the L3 cache rather than referencing

main memory. To ensure this optimal data path is maintained we

had to implement alternatives to the standard Linux memory

management scheme and task scheduler.

At start up, our memory manager takes over control of the system

memory to avoid kernel swapping. Memory allocations are

grouped by query lifetime to avoid memory fragmentation. We

have measured the performance of our memory allocator to be 100x

faster than standard Linux in its implementation, and it is largely

lock-free. The design is NUMA-aware and memory is pinned to

specific NUMA nodes.

The memory allocator is initialized during initial setup of the C++

worker. All memory to be used by the allocator is mmaped in one

contiguous virtual address region. The mmap request and

subsequent analysis guarantee that the allocator only uses memory

that is in either 2 MB or 1 GB HugePage blocks. The virtually

contiguous HugePages need not be physically contiguous. The use

of HugePages decreases the time required for the hardware to

perform virtual-to-physical translation. These initial pages are

mlocked, forcing them to remain in memory at their initial physical

addresses. The memory allocator works entirely within this

contiguous virtual address space. It leverages the contiguity to

enable addressing with fewer bits, which saves space in the

memory metadata storage.

We also implemented our own task scheduler that runs in user space

and is 500x faster than the regular Linux task scheduler. Our

implementation can context switch between queries in ~100

nanoseconds. The execution of a query is synchronized across a

compute cluster so that every node is executing the same stage of

the query plan at the same time. This helps to ensure that when data

(re)distribution takes place, network queue depths do not build up

to the extent that packets of rows end up in main memory instead

of L3 cache.

Yellowbrick is a cooperative multitasking system. Time is divided

into synchronized centisecond slots across a compute cluster. Only

one query is processed across the cluster during this time slot and

every CPU on every worker is entirely devoted to executing the

current plan node for that query during the slot. At the end of the

slot duration, the scheduler switches to process another query. The

scheduler understands different query priorities, favors new work

over longer running queries and coordinates across nodes in the

cluster.

3.3 Networking Optimization using DPDK

Low latency, high bandwidth data exchange between worker nodes

in the public cloud uses the Data Plane Development Kit (DPDK)

[9] to bypass the kernel network stack, avoid intermediate copies

and system calls, and directly address the network device from

within user space. We developed a network protocol on top of UDP

to provide reliable, ordered packet delivery and minimize CPU

overhead. Our DPDK-based implementation provides a significant

query performance enhancement compared to using the TCP/IP-

based networking stack in Linux.

The use of DPDK within the database industry is not new.

ScyllaDB [10], a distributed database compatible with Apache

Cassandra, offers user-space networking through DPDK via the

open-source C++ framework, Seastar [11]. While Seastar

implements TCP in user space, it does not consider reliability over

datagram protocols. The perceived difficulties in implementation

and the need to recreate much of the networking stack that Linux

already provides have impeded the application of DPDK in MPP

database management systems to date.

In our implementation, DPDK is configured such that each vCPU

thread on a worker connects to a corresponding vCPU thread on a

different worker. Each thread has its own receive and transmit

queues which are polled asynchronously. Receive side scaling is

enabled to route packets between threads on a worker that share the

same network interface card.

It is worth noting that, from our prior experiments, running DPDK

inside a container does not impact performance versus running

outside a container. A virtual function on a Single Root I/O

Virtualization-enabled (SR-IOV) network interface card can be

called directly from within a container. All major cloud providers

offer access to such enhanced networking capabilities and allow

multiple network interfaces to be attached to the same Kubernetes

pod.

Cluster Size Runtime

with TCP

Runtime

with DPDK

Speedup due

to DPDK

2 2430s 1976s 19%

3 1626s 1358s 17%

4 1222s 995s 19%

Table 1: Sequential runtime of the 99 TPC-DS queries at 1 TB

scale versus compute cluster size and network implementation

To illustrate the impact of DPDK on query performance, we

executed a benchmark using the industry-standard TPC-DS [12]

workload on Yellowbrick running in AWS. The Yellowbrick

software can be configured to use either DPDK with our custom

network protocol or TCP/IP. We performed a sequential run of the

99 SQL queries from the TPC-DS benchmark at the 1 TB scale.

The benchmarking procedure followed [13] allows us to compare

Yellowbrick performance with the published performance of other

data warehouse platforms for this benchmark. In accordance with

the benchmarking procedure, no tuning of the queries, the schema

or the data was performed. From a data distribution perspective,

rows are randomly allocated to the compute nodes rather than

following a hash-based distribution strategy to maximize the

volume of data exchanged between workers.

The total sequential runtime of the 99 TPC-DS queries is given in

Table 1, utilizing TCP/IP and DPDK with our custom protocol for

different compute cluster sizes. Over the entire sequential run, the

compute nodes in the cluster exchange approximately 1.5 TB of

data across the network.

CIDR '24, January, 2024, Chaminade, USA ➢ M. Cusack et al.

The AWS EC2 instance type used in each cluster is the i4i.4xlarge,

which provides a network bandwidth of up to 25 Gbps, a single

3.75 TB NVMe SSD drive and 128 GB of DRAM. DPDK utilizes

two Elastic Network Adapters (ENA) on this node type, with 8

receive and transmit queues per ENA and each queue pair mapped

to each of the 16 vCPUs.

From Table 1, the use of DPDK boosts the performance of this

workload by almost 20%. The impact of the exchange of data

between MPP workers during query execution is only one factor

determining the runtime of a query. The runtime is also influenced

by overall query complexity, the query plan chosen by the cost-

based optimizer and storage I/O bandwidth.

Understanding the role of these other factors in query performance

requires analysis of individual query runtimes. The improvement in

individual query runtime as a function of the data exchanged

between workers is illustrated in Figure 4 for a cluster with 4

workers.

Figure 4: Runtime improvement of the 99 TPC-DS queries with

DPDK vs TCP/IP as a function of data exchanged over the

network for a 4-node compute cluster (semi-log x-axis)

The performance gains due to DPDK are correlated with volume of

data exchanged between MPP nodes during the execution of a

query, with the lowest gains associated with queries that exchange

the least data. However, even queries that exchange a relatively

modest amount of data can see significant performance increases

due to kernel bypass and zero copy.

Cluster Size Q50 Runtime

with TCP/IP

Q50 Runtime

with DPDK

Q50 Speedup

with DPDK

2 74s 52s 29%

3 51s 15s 71%

4 30s 10s 66%

Table 2: Runtime of TPC-DS query 50 at the 1 TB scale as a

function of compute cluster size and network implementation

The outlier, Q50, highlights the role query complexity plays in

dictating the runtime improvement gained from DPDK (Table 2).

Q50 demonstrated the largest improvement in execution time. The

runtime for this query is dominated by the time taken to exchange

rows over the network between workers during the hash join of two

of the largest tables in the data set, containing 2.9 billion and 288

million records respectively. The nodes exchange ~100 GB during

the execution of this query.

From Table 2, DPDK provides a 65-70% boost to the performance

of Q50 for the two largest cluster sizes. The lower impact on

performance in the case of the 2-node cluster can be attributed to

network and local NVMe SSD storage bandwidth saturation.

3.4 Storage Optimizations

Most modern data warehouse implementations are backed by

column stores [14]. While this approach can result in high data

compression and good performance when querying a limited

number of fields in a table, it is compromised in its ability to

support efficient operations on single records. We opted for a

hybrid storage engine design that combines a front-end row store

and a back-end column store. The row store is managed by the data

warehouse instance microservice.

From a query perspective, a table with data spanning both the row

store and column store appears as a single logical table. Data can

be inserted into the row store on a record-by-record basis at high

speed and is instantly accessible. Rows are automatically flushed

into the column store over time. Bulk loads of large amounts of data

are inserted directly into the column store via parallel connections

to the workers, bypassing the row store.

ACID properties are preserved across the row and column store by

using a common transaction log with a “read committed” level of

isolation and multi-version concurrency control. Shard files are

immutable, and deleted records are tracked through the presence of

side files containing bitmaps that mask the deleted rows in their

respective shard. Shard files and deletion files are merged

periodically to create new shard files.

Workers read data in 256 KB blocks from the object store and cache

them locally on NVMe SSDs using a mixed strategy of single block

reads and prefetching. This read block size provided reasonable

tradeoffs between read IOPS, throughput and NVMe cache

efficiency in our experiments with AWS S3.

A variant of the standard LRU policy providing basic scan

resistance (newly inserted pages are placed further down the list,

and only promoted to the head on second access) governs NVMe

cache eviction. In the case of data loading, records are persisted

directly in object storage while workers notify each other of

changes to shard file ownership that will affect their caches.

Following compute cluster resize, shard file ownership amongst the

workers is reallocated using Rendevous hashing [15]. During query

execution, data is read from the NVMe cache in blocks of 32 KB

or less across the PCIe lanes into L3 CPU cache.

Shard files are ~100 MB in size and are transactionally written to

the object store in 2 MB blocks. Each block is written with a single

PUT operation. Data committed to Yellowbrick is written around

the NVMe cache and into object storage; the cache is only

populated through read operations. Experiments performed on

AWS S3 indicate 2 MB writes provide the optimal bandwidth and

throughput for our use case.

We implemented our own C++ S3 connection library [16] to

support deployments on AWS. The connection library is used by

0%

10%

20%

30%

40%

50%

60%

70%

1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02

%
 I

m
p

ro
ve

m
en

t

Network I/O (GB)

Q50

Yellowbrick: An Elastic Data Warehouse on Kubernetes CIDR '24, January, 2024, Chaminade, USA

the workers to read and write shard files to S3 buckets. We found

the standard AWS C++ S3 client library to be somewhat inefficient.

Our library delivers 3x the throughput, saturates the network, and

uses a fraction of the CPU compared to the AWS implementation.

Performance and efficiency gains were realized by greatly reducing

the number of data copies and memory allocations, pipelining

HTTP/HTTPS requests, and through prudent socket management.

4 PERFORMANCE COMPARISON

In Table 3, we compare our TPC-DS 1 TB timings and costs when

deployed on AWS with results published for other data warehouse

platforms [13]. The configuration of each platform was selected

based on a broadly similar hourly cost [13].

Platform Configuration Total

Runtime

Relative

Runtime

Cost per

hour

Yellowbrick 4x i4i.4xlarge 995s 1 $8.42

Snowflake Medium 2690s 2.7 $8.00

Redshift 3x ra3.4xlarge 3199s 3.2 $9.78

BigQuery 300 Slots 2298s 2.3 $8.22

Synapse DW500c 4846s 4.9 $6.00

Databricks 4x i3.2xlarge 2974s 3.0 $7.22

Table 3: Comparison of the sequential total runtimes of the 99

TPC-DS queries at the 1 TB scale across competing data

warehouse platforms

As in Section 3.3, we followed the same methodology when

executing the benchmark on Yellowbrick, first warming the NVMe

SSD caches on each compute node by running a full table scan for

each table in the schema, and then timing one sequential run

through the 99 SQL queries in the benchmark. No modifications to

the published [13] TPC-DS queries or schema were made. For these

configurations, a 4-node Yellowbrick cluster executes the TPC-DS

1 TB workload 2-5x faster than the other platforms.

The relative cost per query is an important normalizing metric since

it accounts for both the price and the performance of each platform.

The optimizations described in the previous sections result in cost

savings of 2-3x over the other platforms based this synthetic

benchmark (Figure 5).

An interesting, but not surprising, feature of Figure 5 is how similar

in price-performance terms the other data warehouse platforms are

to each other, excluding Yellowbrick. After all, most modern data

warehouse platforms incorporate the same standard SQL and

database software optimization techniques, such as automated SQL

rewrites, cost-based optimization, caching, SIMD operations,

columnar storage and zone maps. They are also running on similar

public cloud hardware. To differentiate in the market in terms of

price-performance, we believe that a data warehouse platform must

optimize in the Linux kernel to tailor low-level operations to meet

the requirements of data warehouse workloads.

Figure 5: Relative cost per query across the platforms listed in

Table 3 for the TPC-DS benchmark at 1 TB scale

4.1 Scaling Compute and Data

We characterized the scaling capabilities of Yellowbrick by

performing sequential runs of the TPC-DS queries against different

scale factors and compute cluster sizes (Figure 6). The total runtime

remains approximately the same for a given ratio of data to node

count as the data volume increases from 3 TB to 100 TB.

Figure 6: Runtime scaling as a function of compute cluster size

and data set size (3 TB to 100 TB) for the TPC-DS benchmark

Data set Configuration Total

Runtime

Cost per TB

per run

3 TB 2x i4i.4xlarge 5430s $2.72

10 TB 6x i4i.4xlarge 5451s $2.04

30 TB 20x i4i.4xlarge 5036s $1.94

100 TB 60x i4i.4xlarge 6071s $2.06

Table 4: Price-performance per TB per sequential run of the

TPC-DS queries over varying data volumes and compute

cluster sizes

0

0.5

1

1.5

2

2.5

3

3.5

Yellowbrick BigQuery Snowflake Synapse Databricks Redshift

R
el

at
iv

e
C

o
st

 p
er

 Q
u

er
y

0.0

0.5

1.0

1.5

2.0

R
u

n
ti

m
e

(h
o

u
rs

)

CIDR '24, January, 2024, Chaminade, USA ➢ M. Cusack et al.

The linear scaling of price-performance is shown in Table 4. The

results demonstrate that Yellowbrick will scale predictably from a

price-performance perspective as data volumes and workloads

grow.

4.2 Concurrency Scaling

We also performed measurements of the concurrency scaling

characteristics of Yellowbrick. For these tests we used the 1 TB

TPC-DS data set and workload. Each compute cluster has a

maximum concurrency limit of 100 queries. Workloads that exceed

this limit are queued. The concurrency limit can be configured

through a workload management profile and so trade-offs can be

made between the degree of concurrency and the memory and

temporary spill space available to each query on a per cluster basis.

We configured a 20-node cluster of i4i.4xlarge EC2 instances with

64 concurrency lanes and ran 1, 2, 4, 8, 16, 32 and 64 parallel

streams of the 99 TPC-DS queries in turn. Each stream executed a

random sequence of the 99 queries.

Figure 7: Relative TPC-DS workload runtime and query

throughput for a varying number of concurrent streams using

a 20-node i4i.4xlarge cluster with data at the 1 TB scale factor

Yellowbrick’s workload management scheme does not reserve

CPU capacity for each lane a query runs in. If only one query is

running on a cluster then the query is allocated all the available

CPU in the cluster. As more queries are submitted, CPU is allocated

to queries depending on their relative priority which can be set

through workload management rules. In the case of equal priority,

one would therefore expect the time taken to execute the same

query concurrently in two lanes would be double the runtime of the

query running on its own.

Figure 7 shows the runtime relative to a sequential run of the 99

TPC-DS queries for different degrees of concurrency on a 20-node

cluster. As expected, the runtime doubles as the degree of

concurrency doubles. Yellowbrick’s actual concurrency scaling is

better than linear for this workload, likely due to data sharing

between concurrent queries in different lanes accessing data

already present in the CPU caches. Note also that the query

throughput remains consistent across increasing degrees of

concurrency, again ensuring predictable price-performance as

workload volumes increase.

We extended the testing to examine the impact on runtime and

query throughput with different cluster sizes while maintaining the

degree of concurrency at 64 streams (Table 5).

For 64 concurrent query streams, increasing the size of the cluster

decreases the runtime and increases the query throughput, albeit

with diminishing returns for this level of concurrency and

workload.

Configuration Query

Streams

Query

Count

Total

Runtime

Relative

Runtime
QPS

10xi4i.4xlarge 64 6336 29174s 1.0 0.22

20xi4i.4xlarge 64 6336 19011s 0.7 0.33

30xi4i.4xlarge 64 6336 16110s 0.6 0.39

Table 5: TPC-DS workload runtime and query throughput for

64 concurrent streams for a 10, 20 and 30-node i4i.4xlarge

cluster with data at the 1 TB scale factor

4.3 Multi-cluster Scaling

The concurrency and the scaling characteristics for a single

compute cluster depend on the complexity and resource

requirements of the workload. To avoid queuing queries on a single

cluster, and to scale query concurrency linearly, our customers can

take advantage of Yellowbrick’s in-built query load balancer to

distribute queries across more than one cluster. The load balancer

allocates in-bound queries across clusters on a least-busy basis.

We extended our scaling tests from Section 4.2 to demonstrate the

additional query concurrency and throughput that can be obtained

by distributing workloads automatically over more than one

compute cluster using the load balancing mechanism. In this

experiment, we added a second and third cluster of 20-nodes

alongside the original 20-node cluster, increasing the concurrency

level to 128 streams and then to 196 streams of randomly ordered

TPC-DS queries.

Cluster

Count

Query

Streams

Query

Count

Total

Runtime

Relative

Runtime

QPS

1 64 6336 19011s 1.0 0.33

2 128 12672 19116s 1.0 0.66

3 192 19008 18949s 1.0 1.00

Table 6: TPC-DS workload runtime and query throughput for

64, 128 and 192 concurrent streams using load-balanced multi-

cluster configurations (20 compute nodes per cluster) with data

at the 1 TB scale factor

Table 6 shows that when the workload is shared across multiple

compute clusters, the query throughput increases linearly as the

degree of query concurrency increases linearly.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Q
u

er
ie

s
p

er
 S

ec
o

n
d

R
el

at
iv

e
R

u
n

ti
m

e

Concurrent Streams

Actual Linear QPS

Yellowbrick: An Elastic Data Warehouse on Kubernetes CIDR '24, January, 2024, Chaminade, USA

A common pattern our customers follow is to define a single cluster

configuration that satisfies the performance requirements for a

certain number of users, and then add additional clusters following

this sizing template as their user community and business grows.

The load balancer ensures that applications are oblivious to multi-

cluster expansions. Our customers can start small with as little as a

one node compute cluster, expand this cluster node-by-node, and

then add more clusters as needed.

5 CONCLUSIONS AND FURTHER WORK

Yellowbrick’s adoption of Kubernetes as the orchestration and

platform-agnostic runtime enables it to deliver a modern data

warehouse that runs anywhere. Kubernetes does the heavy lifting

when it comes to managing the lifecycle of the data warehouse,

providing elasticity, availability, and scalability. The delegation of

infrastructure responsibility to Kubernetes has allowed us to focus

on the core business of enhancing database performance and adding

new features. Work to optimize our database software, the network

protocols and in the kernel has not been impeded by Kubernetes.

We are still able to efficiently access low level devices such as

NVMe SSDs and network interface cards even in virtualized public

cloud environments.

The optimizations implemented to reduce OS kernel overhead in

Yellowbrick contribute significant performance benefits. As our

benchmarks show, using a custom network protocol based on

DPDK for the exchange of data between MPP nodes alone reduces

the runtime of some queries by as much as 70% in the public cloud.

We also demonstrated how Yellowbrick scales linearly along

dimensions including: compute cluster size, number of compute

clusters, data volume, and degree of query concurrency. The

implication of these results is that the price-performance of

Yellowbrick can be reliably predicted, and customers can be

confident that Yellowbrick will scale as their business grows.

As a next step, we are investigating the impact of compression on

networking performance. Initial results indicate a 50% reduction in

network data volume with lz4 compression. We are also evaluating

the performance impact of offloading the compression overhead to

the network interface card.

Additional performance improvements in progress include:

extending our range-based filtering to support multiple ranges per

column; support for more complex Bloom filter expressions and the

selective application of filters based on cost; and further automated

SQL query rewrites in the planner. In our testing, manual tuning of

the TPC-DS queries results in a further 2x speedup for this

workload on Yellowbrick. However, tuning our query planner to

perform well against this artificial workload is low on our priority

list.

REFERENCES
[1] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock, J.

Claybaugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee, A. Motivala, A.

Q. Munir, S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis, and P. Unterbrunner.

2016. The Snowfake Elastic Data Warehouse. In SIGMOD. San Francisco, CA,

USA, 215–226, 2016.

[2] BigQuery. https://cloud.google.com/bigquery/docs/introduction. Accessed: May

30, 2023.

[3] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, and V.

Srinivasan. 2015. Amazon Redshift and the Case for Simpler Data Warehouses.

In SIGMOD. Melbourne, Victoria, Australia, 1917–1923, 2015.

[4] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. 2016. Borg,

Omega, and Kubernetes. Queue, 14(1), 2016.

[5] Altinity ClickHouse Operator. https://github.com/Altinity/clickhouse-operator.

Accessed: May 30 2023.

[6] O. Basarir, L. Hamel, J. Patel, D. Sharp, G. Tadi, F. Yang and X. Zhang. 2019.

Pivotal Greenplum for Kubernetes: Demonstration of Managing Greenplum

Database on Kubernetes. In SIGMOD. New York, NY, USA, 1969–1972, 2019.

[7] Vertica on Kubernetes. https://www.vertica.com/blog/vertica-on-kubernetes/.

Accessed May 30, 2023.

[8] Flajolet, Philippe; Fusy, Éric; Gandouet, Olivier; Meunier, Frédéric. 2007.

Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm.

Discrete Mathematics and Theoretical Computer Science Proceedings. Nancy,

France. 137–156, 2007.

[9] Linux Foundation. DPDK. https://www.dpdk.org/. Accessed: May 30, 2023.

[10] ScyllaDB Inc. ScyllaDB. https://www.scylladb.com/. Accessed: May 30, 2023.

[11] Seastar. http://seastar.io/. Accessed: May 30, 2023.

[12] TPC-DS. https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-

DS_v3.2.0.pdf. Accessed: May 30, 2023.

[13] Fivetran Cloud Data Warehouse Benchmark.

https://www.fivetran.com/blog/warehouse-benchmark. Accessed: May 30,

2023.

[14] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch

Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth

O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A

Column-Oriented DBMS. In VLDB 2005. 553–564, 2005.

[15] Thaler, David and Chinya Ravishankar. 1996. A Name-Based Mapping Scheme

for Rendezvous. University of Michigan Technical Report CSE-TR-316-96,

1996.

[16] N. Carson. Improving S3 performance from C++.

https://www.neilcarson.me/s3iops/. Accessed May 30, 2023.

