
Predicate Transfer: Efficient Pre-Filtering on Multi-JoinQueries
Yifei Yang, Hangdong Zhao, Xiangyao Yu, Paraschos Koutris

University of Wisconsin-Madison
yyang673@wisc.edu,{hangdong,yxy,paris}@cs.wisc.edu

ABSTRACT

This paper presents predicate transfer, a novel method that optimizes
join performance by pre-filtering tables to reduce the join input
sizes. Predicate transfer generalizes Bloom join, which conducts
pre-filtering within a single join operation, to multi-table joins such
that the filtering benefits can be significantly increased. Predicate
transfer is inspired by the seminal theoretical results by Yannakakis,
which uses semi-joins to pre-filter acyclic queries. Predicate trans-
fer generalizes the theoretical results to any join graphs and use
Bloom filters to replace semi-joins leading to significant speedup.
Evaluation shows predicate transfer can outperform Bloom join by
3.3× on average on TPC-H benchmark.

1 INTRODUCTION

Joins constitute a substantial portion of query execution time, and
have been studied and optimized for decades, in topics including
binary joins (with a main focus on hash joins) [10, 11, 14, 21], join
ordering in multi-way joins [23, 29–31, 34], and recent emerging
worst-case optimal join algorithms [16, 26, 35, 36]. One effective
principle for enhancing join performance is to minimize the join
input sizes by pre-filtering rows that will not appear in the join
result. Predicate pushdown [15, 17, 18, 20, 24, 33] exemplifies this
principle by applying local predicates on a table before executing
any join operation.

The Bloom join [13, 22, 28] extends this principle beyond a single
table. In the Bloom join, a Bloom filter is constructed using the join
key in one table, and sent to the other table to filter out rows that
do not pass the filter—these rows do not match any keys in the
first table and will not participate in the join. The Bloom join can
effectively reduce the join input sizes thereby reducing the query
runtime. However, existing Bloom join solutions can perform such
pre-filtering only within a single join operation.

In this paper, we further generalize the pre-filtering principle
across multiple joins. Namely, we use predicates on individual tables
to pre-filter multiple other tables in the query, further reducing the
join input sizes. We call this new technique predicate transfer.
A predicate on one table 𝑇1 can be transferred (e.g., in the form
of a Bloom filter) to a table 𝑇2 that joins with 𝑇1. 𝑇2 can apply
the predicate and further transfer it to table 𝑇3 that joins with 𝑇2
(but 𝑇1 does not necessarily join with 𝑇3). The transfer process
can propagate further such that the original predicate can filter
multiple other tables (e.g,𝑇2,𝑇3, etc.). The conventional Bloom join
is a special case of the more generalized predicate transfer—a Bloom
join is a one-hop predicate transfer.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2024. 14th Annual Conference on
Innovative Data Systems Research (CIDR ’24). January 14-17, 2024, Chaminade, USA

The idea of predicate transfer is inspired by the seminal pa-
per [38] by Yannakakis. For an acyclic query that equi-joins mul-
tiple tables, the Yannakakis algorithm achieves the theoretically
maximum pre-filtering selectivity by adding an additional semi-join
phase prior to the actual joins, which filters a table by semi-joining
it with other tables. The process filters one table at a time following
the tree structure of the query until every predicate is spread across
all joining tables.

For all its theoretical elegance, the Yannakakis algorithm has not
yet made its way into modern database engines. The main obstacles
are the costly hash table accesses and high memory consumption in
the semi-join phase. Predicate transfer aims to address these practi-
cal limitations. It significantly reduces the overhead of semi-joins
by passing succinct data structures like Bloom filters. Although
predicate transfer no longer achieves the theoretically maximum
filtering selectivity, it achieves much higher performance overall.

In the rest of the paper, we first describe the background and
related work of predicate transfer in Section 2, with a focus on the
Bloom join and Yannakakis algorithm. We then describe the design
space of predicate transfer in detail, and our current heuristics in
different design dimensions in Section 3. We report preliminary
performance evaluations on TPC-H [1] in Section 4, which shows
that on average predicate transfer can outperform Bloom join by
3.3× (up to 61×) and the Yannakakis algorithm by 4.8× (up to 47×)
respectively. Finally, Section 5 concludes the paper and discusses
future work.

2 BACKGROUND AND RELATEDWORK

This section presents the background and related work in Bloom
join (Section 2.1) and the Yannakakis algorithm (Section 2.2).

2.1 Bloom join

A Bloom filter [9, 12, 25, 27, 32] is a compact probabilistic data
structure that determines whether an element exists in a set. A
Bloom filter has no false negative but may have false positives. In
a Bloom join of two tables, a Bloom filter is constructed on one
table (typically the smaller one) using the join key. The filter is then
sent and applied to each row in the other table; if a row does not
pass the filter, it matches no row in the first table and should not
participate in the join. Since testing a Bloom filter is generally faster
than performing a join, Bloom join can speedup query processing,
especially when the join is selective. Modern OLAP DBMSs (e.g.,
Oracle [5], Redshift [6], Snowflake [7], Databricks [8]) widely adopt
Bloom filters to accelerate join execution.

Most existing Bloom join algorithms can be applied to only a
single join operation. This means the predicate on one table can only
be used to pre-filter rows in the other table it joins with; namely,
the predicate is transferred in one-hop and one-direction. Some
prior work [39] has extended the idea to datasets with star schemas,
allowing all dimension tables to transfer local predicates to the fact



CIDR’24, January 14-17, 2024, Chaminade, USA Yifei Yang, Hangdong Zhao, Xiangyao Yu, Paraschos Koutris

table, which outperformed the baseline Bloom join. However, these
solutions do not generalize to more complex query plans.

2.2 Yannakakis algorithm

The Yannakakis algorithm [38] is a classic algorithm that can pre-
filter out all rows from tables that do not appear in the final join
result, thereby achieving the theoretically maximum filtering selec-
tivity. The algorithm applies to acyclic join queries. The acyclicity is
more formally termed as 𝛼-acyclicity [38]. The algorithm is proven
to run in 𝑂 (𝑁 +OUT) time, where 𝑁 is the size of input relations
andOUT is the query output size. Thus, the Yannakakis algorithm is
known to be instance optimal since 𝑁 +OUT is the unavoidable time
cost of reading the input and enumerating the output for a query.
The algorithm starts by choosing a rooted join tree arbitrarily, and
then proceeds with a semi-join phase and a join phase.
Semi-join phase. The semi-join phase contains two passes: the
forward pass and the backward pass. The forward pass traverses
the join tree in a bottom-up fashion. At each vertex, we filter the
table by a sequence of semi-joins with its children. A semi-join of
two tables 𝑅 and 𝑆 is defined as 𝑅 ⋉ 𝑆 = Πattr(𝑅) (𝑅 ⊲⊳ 𝑆), which
effectively removes all tuples in 𝑅 that do not join with any tuple in
𝑆 . The forward pass stops when the root node is reached. Similarly,
the backward pass traverses the join tree in a top-down fashion. At
each vertex, the table is filtered by a semi-join with its parent. The
backward pass stops when all leaf nodes are reached. It is proven
that both passes can be executed in 𝑂 (𝑁 ) time and all tuples that
will not contribute to the output are removed.
Join phase. The join phase can join the filtered tables in any order.
It is proven that regardless of the chosen join order, the join phase
can be executed in 𝑂 (OUT) time.

As a reflection, the semi-join phase filters all redundant tuples
and the join phase executes the join with automatic robustness: it
can join the tables in any order without any intermediate table size
blow-up over the output size. The algorithm was later extended by
Joglekar et al. [19] to handle aggregations on top of join queries.

3 PREDICATE TRANSFER

This section describes the proposed predicate transfer algorithm.
We use Query 5 in TPC-H benchmark [1] (Figure 1) as a running
example. This query contains six tables, six inner joins, and two
predicates on tables region and orders respectively. The discus-
sion assumes equi-join between tables.

3.1 Overview

Similar to the Yannakakis algorithm, predicate transfer executes a
query in two phases.
Phase 1: Predicate Transfer Phase. A join graph is constructed
for a query, where each vertex is a table and each edge is a join
operation. A local predicate is constructed as a filter (e.g., a Bloom
filter) and be transferred across the join graph. The schedule of the
predicate transfer phase introduces a large design space, which we
discuss in Section 3.2.
Phase 2: Join Phase. After the transfer phase finishes, each table
has multiple filters, including both local filters and transferred
filters. The database can now apply the filters and perform regular

lineitem
SF*6000K

orders
SF*1500K

customer
SF*150K

supplier
SF*10K

nation
25

region
5

custkey
orderkey

nationkey

suppkeynationkey

regionkey

predicate 
on r_name

predicate on 
o_orderdate

nationkey

(a) Join Graph

region nation supplier customer orders lineitem

Backward pass 

𝜎 𝜎

Forward pass

(b) Predicate Transfer Graph

Figure 1: Predicate Transfer for TPC-H Q5.

joins. The actual inputs of each join will be substantially smaller
if the transferred filters are selective. We discuss the join phase in
Section 3.3.

In the next two subsections, we will describe the design space of
these two phases and the heuristics we currently use to implement
predicate transfer in our prototype. These heuristics are largely
intuition-based and a more thorough theoretical analysis is left for
future work.

3.2 Predicate Transfer Phase

In the rest of this section, we layout the design space of the transfer
phase and describe the design choices we adopt in our prototype.
Filter Transformation.When transferring a filter across edges
that have different join keys, the filter must be transformed. For ex-
ample, a filter constructed on region can be transferred to nation,
but the same filter cannot be directly sent to supplier from nation
in the next transfer hop since the join keys do not match. We use
the following algorithm to handle the join key mismatch between
incoming and outgoing edges on nation. When the incoming filter
is received, an empty outgoing filter is created. Then, the columns
for both incoming and outgoing join keys in nation are scanned
(assuming columnar store; otherwise scan the entire table). Inher-
ent filters of nation are applied during the scan. Then for each
row, the incoming join key is used to probe the incoming filter. If a
match occurs, the corresponding outgoing join key is added to the
outgoing filter. At the end of the scan, the outgoing filter is sent to
downstream tables (i.e., supplier). The algorithm is efficient as it
requires scanning the join keys only once.

Figure 2 shows an example of filter transformation on table 𝑅.
Table 𝑅 has three columns, and participates into three different joins
on columns𝐴, 𝐵, and𝐶 respectively. In the predicate transfer phase,
𝑅 receives two incoming filters (assume we are using Bloom filters)
on join attributes 𝐴 and 𝐵 respectively. Column 𝐴 is used to probe
the incoming filter on join attribute 𝐴, where all rows except the



Predicate Transfer: Efficient Pre-Filtering on Multi-JoinQueries CIDR’24, January 14-17, 2024, Chaminade, USA

Figure 2: Filter Transformation — Table 𝑅 receives two incoming filters
on join attributes 𝐴 and 𝐵, and generates a transformed outgoing filter on
join attribute𝐶 .

first satisfy the join condition (with false positives). Then column
𝐵 on the remaining rows is used to probe the incoming filter on
join attribute 𝐵, with another two rows (row 2 and 4) filtered out.
Finally, column 𝐶 on the remaining two rows (row 3 and 5) is used
to build the outgoing filter.
Predicate Transfer Graph. The join graph determines the topol-
ogy of predicate transfer. Figure 1a shows the join graph for Query
5 in TPC-H. Each equi-join is represented as an edge. A predicate
transfer graph is a directed subgraph of the join graph. Transfers
happen along the selected edges in the subgraph—local predicates
of the source vertex are transferred to the target vertex as a filter.
Figure 1b shows one predicate transfer graph of TPC-H Q5.

The topology of the predicate transfer graph affects the perfor-
mance of the predicate transfer phase and also the selectivity of
the transferred filters. In this paper, we use a simple heuristic that
points an edge from a smaller table to a bigger table. The intuition
is the same as why Bloom join builds Bloom filter at the smaller
table—to reduce Bloom filter size and increase filter selectivity. Our
current heuristic does not remove any edge in the join graph when
generating the predicate transfer graph. It also guarantees that the
resulting graph is a Directed Acyclic Graph (DAG). The predicate
transfer graph in Figure 1b follows this heuristic.
Transfer Schedule. The transfer schedule determines when and
how the predicates are transferred across the predicate transfer
graph. Numerous design decisions can be made in the schedule. In
particular, the schedule specifies which tables in the query should
construct initial local filters to start the transfer process, and the or-
der of issuing the remaining transfers. For each table that sends the
local filter out, the schedule determines when the transfer happens—
multiple transfers may happen in serial or parallel. Moreover, the
transfer can happen back and forth, following both directions of
certain edges. Pruning may be adopted to avoid non-beneficial
transfers, and the transfer direction may be dynamically adjusted
at runtime. Identifying a good transfer schedule is critical to the
system performance.

In this paper, we adopt a heuristic that builds the transfer sched-
ule using one forward pass and one backward pass similar to the
Yannakakis algorithm. The predicate transfer graph is determined
at planning time and remains fixed during runtime. In the forward

pass, we build initial local filters on the leaf nodes in the predi-
cate transfer graph (i.e., nodes with only outgoing edges but no
incoming edge). These filters are transferred following the topo-
logical order of the predicate transfer graph, which exists because
the graph is a DAG. If one node has one or more incoming edges,
the node will collect all the incoming filters before performing the
transformation to produce outgoing filters (LIP-style [39] incoming
filter ordering can be utilized for further optimization); the trans-
formation will scan the table only once, regardless of the number
of incoming or outgoing edges. The forward pass finishes once all
filters are fully transferred.

The system then starts the backward pass, where we simply
reverse the direction of all edges and repeat the same process in
the forward pass. After both passes are done, each table has been
reduced based on the transformed filters it receives. The later join
phase will start from these pre-filtered tables.

(a) Forward Pass

(b) Backward Pass

Figure 3: Example of Predicate Transfer on a Join Query—𝑅 ⊲⊳ 𝑆 ⊲⊳ 𝑇 .

Figure 3 presents an example of predicate transfer on a join query,
which joins three tables 𝑅, 𝑆 , and 𝑇 . Assume the transfer starts at
table 𝑅 and all inherit local filters are already consumed. In the
forward pass (Figure 3a), 𝑅 first constructs a Bloom filter (𝐵𝐹1) on
join attribute 𝐵 and sends it to 𝑆 . 𝑆 applies 𝐵𝐹1 to its join attribute
𝐵, which filters out two rows (row 2 and 5), and the remaining three
rows are used to construct a new Bloom filter (𝐵𝐹2) on another join
attribute𝐶 . When𝑇 receives the transformed filter from 𝑆 , the join
column𝐶 is used to probe the filter where row 1 and 3 are removed.
The backward pass (Figure 3b) starts with input as the remaining
rows of the forward pass. Table 𝑇 constructs a Bloom filter (𝐵𝐹 ′1)
on join attribute𝐶 , which is applied on 𝑆.𝐶 , with row 3 filtered out.
Then 𝑆 constructs another Bloom filter (𝐵𝐹 ′2) on the join column 𝐵,
which is able to filter three rows (row 1, 3, and 5) from 𝑅.



CIDR’24, January 14-17, 2024, Chaminade, USA Yifei Yang, Hangdong Zhao, Xiangyao Yu, Paraschos Koutris

A more complicated example is TPC-H Q5, which is shown in
Figure 1b. The first Bloom filter is constructed on region, and
sent to nation. The filter is then transformed into two outgoing
filters which are sent to customer and supplier respectively. Sim-
ilarly, supplier transfers two outgoing filters following the edges
to customer and lineitem. At customer, two separate incoming
filters are applied with one outgoing filter produced and sent to
order, which is then transformed and sent to lineitem. The for-
ward pass finishes when both incoming filters arrive at lineitem,
and after that the backward pass begins in a symmetric way.
Filter Type. Our discussion so far uses Bloom filters to represent
the predicates. In fact, other representation of filters can also be
used. If a precise representation is used, i.e., the filter precisely
encodes all the join keys, then a transfer becomes a semijoin and
the algorithm becomes similar to Yannakakis. An ideal filter should
be efficient to construct and check, and achieve low false positive
rates. We use Bloom filters in our prototype since it is the best
candidate available today. But predicate transfer can automatically
benefit from any potential improvement in filtering techniques.
Transfer Path Pruning. As discussed above, our current schedul-
ing heuristic makes two full passes of the predicate transfer graph.
In practice, some transfers may not increase filter selectivity but
consume computational resources. An intelligent transfer scheduler
should identify such scenarios and stop transferring these filters
further to avoid wasting CPU cycles. Such transfer path pruning can
be done at either planning time or runtime. Our current prototype
does not incorporate any pruning and always performs the forward
and backward passes in full. We observe this already demonstrates
significant performance improvement, and believe incorporating
path pruning will lead to even larger speedups.

3.3 Join Phase

After the predicate transfer phase completes, each table may have
already been processed by several filters, including the inherent
filters from the query and the transferred filters. The join phase
basically executes the original query with the reduced input tables.
Unified Query Plan. As a straightforward design, the database
can directly execute the query plan as a regular query in the join
phase, with the leaf nodes (i.e. scan) replaced by the filtered tables
produced by the predicate transfer phase. The predicate transfer
schedule is essentially also a query plan. The two query plans can
be concatenated such that the leaf nodes in the join plan are just the
output nodes of the predicate transfer schedule. This avoids rescan-
ning in the join phase and requires no changes to the executor—the
executor is oblivious to the predicate transfer phase and executes
the modified query plan regularly.
More Accurate Cardinality Estimation. The predicate transfer
phase updates the cardinality of the input tables in the join phase.
Therefore, the original query plan generated beforehand may be-
come suboptimal based on the stale cardinalities. A replanning step
between the two phases may produce a better plan that leads to fur-
ther performance improvement. Although join performance will be
more robust to join orders (as will be shown in Section 4.3), perfor-
mance can still be affected by the quality of the query plan, with the
factors including the size of materialized intermediate tables, which

table to build the hash table and which table to probe, etc. Moreover,
similar to the Yannakakis algorithm, predicate transfer bounds the
size of the intermediate join tables in the join phase (Section 3.5),
which can be utilized to improve cardinality estimation.

3.4 Extension to General Queries

In the discussion above, we assume table joins are inner equi-joins,
and cover queries with only joins and local filters (filters over base
tables). In this section, we extend the predicate transfer mechanism
to further support general queries.
Supporting More Operators in Predicate Transfer Graph. We
first extend predicate transfer to support outer joins. In particular,
a left outer join operation can be incorporated into the predicate
transfer graph by allowing predicate transfer in only one direction,
i.e., from the left table to the right table; but the other transfer
direction is blocked. Therefore, such a transfer can happen in either
forward pass or backward pass, but not in both passes. A right outer
join can be supported in a similar way. A full outer join, however,
cannot be incorporated into the predicate transfer graph.

Considering more general operators, we note that an operator
will block predicate transfer if it does not preserve the join key
during the computation (e.g., perform scalar aggregations on the
join key). In particular, we identify the following operators that can
also be incorporated into the predicate transfer graph.

• Operators including filters between intermediate join tables,
column projection, sorting, and top-K do not block predicate
transfer.

• Grouped aggregation does not block predicate transfer when
the join key is a subset of the group key.

• Scalar user-defined functions do not block the transfer to the
downstream join, but may block the transfer to the upstream
join if the function is not invertible.

Beyond a Single Predicate Transfer Graph. Some queries may
contain operators that cannot be incorporated into a predicate
transfer graph. Example operators include but are not limited to
full outer joins, scalar aggregations, and group-by aggregations
where the join key is being aggregated. When such a scenario is
encountered, we can apply predicate transfer only on a subset or
several subsets of the query execution plan, and use conventional
methods to execute the rest of the query. For example, this means
a query can be partially executed first, leading to a subquery plan
that can be represented as a predicate transfer graph in order to
apply predicate transfer. After the predicate transfer phase and the
join phase, the rest of the query can continue execution. It is also
possible that predicate transfer can be applied multiple times to
different parts of the query plan—the predicate transfer phase and
regular query execution can alternate.

In our current prototype, we apply the heuristic that first identi-
fies and executes single-table subquery plans (e.g., group by aggre-
gation on a single table) before the predicate transfer phase.

3.5 Cost Analysis

Compared to the Yannakakis algorithm, predicate transfer does not
provide theoretical optimality, but it is more versatile. Predicate
transfer supports both precise filters (like semi-join) and Bloom



Predicate Transfer: Efficient Pre-Filtering on Multi-JoinQueries CIDR’24, January 14-17, 2024, Chaminade, USA

filters, any join-graph topology, outer joins and cyclic queries, more
operators, and complex predicate transfer schedules.

In this section, we present a simple cost analysis of predicate
transfer compared to the Yannakakis algorithm and show that pred-
icate transfer is more efficient and robust than Yannakakis, and
can achieve close to optimal pre-filtering efficiency. Our key idea is
to show that using the cheap Bloom filters drastically reduces the
cost of excessive hash probes in the semi-join phase of Yannakakis,
filters out most tuples not participating in the joins, and only incurs
bounded amount of false positives to be removed in the join phase.
Cost Model. Let 𝑡 be the number of tables in a given join query
and 𝑁 be the input size (i.e. the total number of tuples in all joining
tables). We assign a unit cost to each per-tuple scan, hash table
insertion or probe, and a 𝛽 cost per-tuple for Bloom filter insertion
or probe. As a Bloom filter is of a small size and thus likely to be
cache resident, Bloom filter operations are typically much cheaper
than hash table operations, i.e. 𝛽 ≪ 1. We assume that the Bloom
filter has a false positive rate of 𝜖 ≪ 1 that can be appropriately
configured (e.g., we can tune 𝜖 to be smaller by increasing the Bloom
filter size or number of hash functions, but this makes 𝛽 larger).
The reader can refer to [39] for an in-depth study on Bloom filter
configurations.
Yannakakis algorithm. At the semi-join phase, scanning tables to
build or probe hash tables cost𝑁 units, independent of the direction
of the forward/backward semi-join passes. The cost of building or
probing intermediate hash tables can be bounded by 𝑐𝑦 ·𝑁 , where 𝑐𝑦
is a constant highly sensitive to the choice of the rooted join tree of
the query. An ideal join tree and orientation can drastically reduce
the size of intermediate hash tables, leading to a cheaper semi-join
phase (smaller 𝑐𝑦 ). The join phase of Yannakakis is perfectly robust,
as every join order costs 𝑡 · OUT units of hash table accesses.
Predicate Transfer. At the predicate transfer phase, scanning
tables to build or probe Bloom filters costs 𝑁 units. As we only
build or probe Bloom filters, the cost can be bounded by 𝛽 · 𝑐𝑝 · 𝑁
units, where 𝑐𝑝 is a constant that depends on the predicate transfer
graph topology and the transfer schedule. As 𝛽 ≪ 1, the sensitivity
of the runtime to the constant 𝑐𝑝 shrinks by a factor of 𝛽 .

Let𝑇𝑘 ,𝑇 ∗
𝑘
be the size of the 𝑘th join table before and after a semi-

join phase of Yannakakis. The predicate transfer phase, however,
passes a larger table of size 𝑇 ∗

𝑘
+ (𝑇𝑘 −𝑇 ∗

𝑘
) · 𝜖 to the join phase, by

an approximated factor of

𝑝 =

𝑡∏
𝑘=1

(
1 +

𝑇𝑘 −𝑇 ∗
𝑘

𝑇 ∗
𝑘

· 𝜖
)
.

Assume

𝑘 = argmax
𝑘

𝑇𝑘 −𝑇 ∗
𝑘

𝑇 ∗
𝑘

,

then

𝑝 ≤
(
1 +

𝑇
𝑘
−𝑇 ∗

𝑘

𝑇 ∗
𝑘

· 𝜖
)𝑡

= (1 + 𝜖′)𝑡 ≈ 1 + 𝜖′𝑡,

ignoring higher order terms of 𝜖′, and assuming

𝜖′ =
𝑇
𝑘
−𝑇 ∗

𝑘

𝑇 ∗
𝑘

𝜖 =

(
1

𝑆𝑒𝑙
𝑘

− 1
)
𝜖 ≪ 1,

where 𝑆𝑒𝑙
𝑘
denotes the smallest join selectivity in the joining tables.

Then in the join phase, the cost of predicate transfer can be
approximated as 𝑡 · OUT · (1 + 𝜖′𝑡) units. The choice of the join
order only affects the extra 𝜖′𝑡2 ·OUT term. Under our assumption
that 𝜖′ ≪ 1 (and thus 𝜖′𝑡2 ·OUT is small), the join phase still attains
promising robustness.

As a summary, the Yannakakis algorithm guarantees maximum
filtering at the semi-join phase and perfect robustness at the join
phase, but at the cost of a much more expensive and unstable semi-
join phase (our evaluation in Section 4.3 verifies this). In contrast,
predicate transfer addresses the shortcomings via a more stable
and efficient Bloom filter transfer scheme,while maintaining near-
maximum filtering capabilities at the predicate transfer phase and
near-perfect robustness in the join phase.

4 EVALUATION

This section presents our preliminary evaluation results. We de-
scribe the experimental setup in Section 4.1 and compare predicate
transfer with baseline join strategies in Section 4.2. Then we per-
form a deep drive to understand the performance on TPC-H Q5 in
Section 4.3.

4.1 Experimental Setup

We conduct experiments on a single AWS EC2 r5.4xlarge instance,
with 16vCPU and 128GB memory. The server runs the Ubuntu
20.04 operating system. We use the widely adopted data analytics
benchmark, TPC-H, with 22 queries in total. We use both an 1GB
data set (a scale factor of 1) and a 10GB data set (a scale factor of 10).
Queries are executed on a single CPU core. For all the experiments,
we measure the in-memory query performance by running the
query twice, where the first run loads all the tables into the memory,
and we measure the performance of the second run.

The testbed we use on evaluation is FlexPushdownDB [37] (FPDB
in short), an open-source cloud-native OLAP DBMS. Table data is
placed on local disks in Parquet [4] format unsharded. FPDB lever-
ages join and Bloom filter implementation of Apache Arrow [3]. The
evaluation results may vary on different DBMSs, depending on the
performance ratio between the join and Bloom filter implemented.

We compare the proposed join strategy PredTrans with three
other baselines: NoPredTrans, BloomJoin, and Yannakakis. No-
PredTrans does not transfer predicates among joining tables—
pairs of tables are joined regularly as in most DBMSs. BloomJoin
performs one-hop predicate transfer between joining table pairs,
where the build side constructs a Bloom filter which is used to filter
the probe side. Yannakakis executes the semi-join phase of the
Yanakakis algorithm ahead of the join phase.

Since the vanilla Yannakakis algorithm is only applicable on
acyclic conjunctive queries, we make two extensions to make it
applicable on all TPC-H queries. First, we adopt the same mecha-
nisms that PredTrans deploys to handle the case of outer joins
and non-join operators in the query plan. Second, for cyclic queries
like Q5 and Q9, we break the cycle in the join graph by randomly
picking a root node and, performing a BFS search from the root.
The result join tree represents the transfer order of the semi-join
phase in Yannakakis.



CIDR’24, January 14-17, 2024, Chaminade, USA Yifei Yang, Hangdong Zhao, Xiangyao Yu, Paraschos Koutris

4.2 TPC-H Performance

Figure 4 shows the execution time of different predicate transfer
strategies on TPC-H queries. Since Q1 and Q6 involve no joins, we
exclude them from the benchmark. On average, PredTrans outper-
formsNoPredTrans by 4.1×, BloomJoin by 3.3×, and Yannakakis
by 4.2× for SF1, and 4.0×, 3.2×, and 4.8× for SF10, respectively. 15
queries out of 20 see performance improvement on both data sets.

PredTrans achieves significant performance improvement on
queries with a large amount of joins. Half of the queries include
joins across at least four tables. Among this, Q2 (joins across nine
tables) benefits most from predicate transfer, which outperforms
NoPredTrans and BloomJoin by 47× and 44× on SF1, as well as
63× and 61× on SF10, respectively. Through predicate transfer, filter
predicates on tables Part and Region are sent to every other table
in the join graph through lightweight Bloom filters. As a result, the
predicate transfer phase of PredTrans reduces the size of input
tables that participate in the join phase by over 99%, such that the
expensive join operations are only performed on a tiny fraction of
data. The Yannakakis algorithm outperforms both NoPredTrans
and BloomJoin baselines by over 4× on both data sets. In fact,
compared to PredTrans, Yannakakis can pre-filter even more
unnecessary data records ahead of the join phase since the Bloom
filters leveraged by PredTrans incur false positives. However, the
small performance benefit within the join phase is overwhelmed
by the large overhead brought by semi-joins, making Yannakakis
perform worse that PredTrans.

On SF1, we observe the highest speed up on queries Q2, Q5, Q17,
Q18, and Q21, between 7× to over 44×. In these queries, there is
a subquery executed with the results joined with the tables in the
main query, and the large fact table are accessed by both the main
query and the subquery (e.g., Lineitem in Q17 and Q18). Since
NoPredTrans and BloomJoin perform no predicate transfer and
one-hop transfer only, a single filter predicate cannot be sent to both
the main query and the subquery to pre-filter the corresponding
fact table. Conversely, PredTrans broadcasts every filter predicate
globally inside the join graph, such that both fact tables in the
main query and subquery can be filtered. Moreover, Q17 joins
base tables with aggregation results. By executing the aggregation
beforehand, predicate transfer is able to achieve a higher selectivity
by starting transfer from a smaller intermediate result table. On
SF10, Q2 and Q5 achieve more improvement on PredTrans than
SF1. The speedup on Q18 is similar on both data sets. However,
for query Q17 and Q21, compared to SF1, the speedup on SF10
of PredTrans shrinks — PredTrans outperforms BloomJoin by
1.8× on Q17 and 7.6× on Q21. On Q17, the grouped aggregation
on the large fact table dominates the execution time, where the
pre-filtering cannot make significant impact. Q21 involves a large
amount of joins, which amplifies the amount of false positives
brought by Bloom filters. As a result, the amount of remaining rows
after the transfer phase is still about 2× as the amount of rows that
actually contribute to the final join output.

Queries with fewer join operations benefit less from predicate
transfer (e.g., Q13, Q14), since one-hop predicate transfer may al-
ready be enough to forward local filter predicates to the global. How-
ever, we still observe a large speedup on Q3 (over 9× on both SF1
and SF10). Q3 joins three relatively large tables customer, orders,

and lineitem. Since all three tables have local filters, BloomJoin
can only transfer a portion of them within a single hop. Instead,
PredTrans can make sure each table receives the transformed filter
predicates of every other table, which maximizes the effectiveness
of the pre-filter phase.

Another interesting observation is that Yannakakis may not
always outperform NoPredTrans and BloomJoin baselines. For
example, Yannakakis underperforms BloomJoin by 16× and 20×
on Q11 on both data sets respectively, and by 4.8× on Q16 with
SF10. One cause is that the Yannakakis algorithm does not specify
the root of the join tree in the semi-join phase, and a bad semi-join
order may construct several large hash tables at the beginning.
However, this is not an issue in PredTrans since we use a heuristic
to transfer from smaller tables to larger tables (see Section 3.2),
minimizing the memory stalls incurred by bitmap operations.

We further identify queries that have operators that block predi-
cate transfer (e.g. outer joins), which are Q13, Q15, Q16, and Q22.
Q13 and Q16 have left or right outer joins which block predicate
transfer on one direction, Q15 has a join where one input is the
result of scalar aggregation, and Q22 contains blocking operators of
both kinds. The speedup on these queries of PredTrans is less than
other queries, since the transfer is restricted within a small portion
of the join graph (e.g. between only two tables), which weakens
the pre-filtering power in the predicate transfer phase.

4.3 Case Study — TPC-H Q5

To get a deeper understanding of the performance benefits, we
conduct a detailed analysis on Q5, one of the complex queries in
TPC-H. The query performs inner joins across six tables, and the
join graph is shown in Figure 1a.

Table 1: Join Table Size in Q5 (SF = 1) —HT denotes the number of rows
in the hash table, and PR represents the number of rows that probe the hash
table.

NoPredTrans BloomJoin Yannakakis PredTrans

HT PR HT PR HT PR HT PR

Join 1 10K 6M 10K 6M 2K 181K 2K 74K

Join 2 228K 6M 228K 1M 133K 181K 44K 67K

Join 3 150K 910K 150K 44K 69K 193K 15K 60K

Join 4 25 36K 25 36K 5 8K 5 7K

Join 5 1 36K 1 7K 1 8K 1 7K

Join Table Size. We measure the sizes of both input tables of each
join, following the join order specified in the query plan (FPDB uti-
lizes Apache Calcite [2] for query optimization like join ordering),
and the results are shown in Table 1 and Table 2. PredTrans reduces
the join table size by 98% over NoPredTrans, 96% over BloomJoin,
and 64% over Yannakakis on SF1 (Table 1), and 98% over NoPred-
Trans, 92% over BloomJoin, and 67% over Yannakakis on SF10
(Table 2). In BloomJoin, the largest fact table lineitem can only be
pre-filtered after the first join, where the inner table Orders owns
local filter predicates that can be trasferred to lineitem. Pred-
Trans shows the superiority to be able to pre-filter all join tables
ahead of the entire join phase.



Predicate Transfer: Efficient Pre-Filtering on Multi-JoinQueries CIDR’24, January 14-17, 2024, Chaminade, USA

Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Geomean
0.0

0.5

1.0

1.5

2.0

N
or

m
.R

un
ti

m
e

6.5

NOPREDTRANS BLOOMJOIN YANNAKAKIS PREDTRANS

(a) SF = 1

Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Geomean
0.0

0.5

1.0

1.5

2.0

N
or

m
.R

un
ti

m
e

9.2 3.4

NOPREDTRANS BLOOMJOIN YANNAKAKIS PREDTRANS

(b) SF = 10

Figure 4: Performance Evaluation of Predicate Transfer on TPC-H (normalized to NoPredTrans).

Table 2: Join Table Size in Q5 (SF = 10) —HT denotes the number of rows
in the hash table, and PR represents the number of rows that probe the hash
table.

NoPredTrans BloomJoin Yannakakis PredTrans

HT PR HT PR HT PR HT PR

Join 1 100K 60M 100K 60M 20K 1.8M 20K 835K

Join 2 2.3M 60M 2.3M 9.3M 1.2M 1.8M 305K 659K

Join 3 1.5M 9.1M 1.5M 499K 689K 1.9M 150K 376K

Join 4 25 364K 25 364K 5 75K 5 73K

Join 5 1 364K 1 73K 1 75K 1 73K

We observe a higher selectivity in the predicate transfer phase
achieved by PredTrans, compared to Yannakakis. This is because
Yannakakis can only guarantee the optimal pre-filtering on acyclic
queries. For a cyclic query (like Q5), some edges in cycles are re-
moved to form a tree, which sacrifices the overall filtering power.
Instead, the heuristic adopted by PredTrans allows us to perform
transfer for every join (in Q5 there is no blocking operator) regard-
less the cyclicity of the join graph, resulting in more base table
records pre-filtered ahead of the join phase.
PerformanceBreakdown. Figure 5 demonstrates the performance
breakdown of Q5 in different predicate transfer strategies. The exe-
cution time is divided into pre-filter time and join time. Compared
to NoPredTrans and BloomJoin, joins are accelerated by 44× and
34× in PredTrans on SF1, as well as 60× and 46× in SF10, due to
the significant size reduction of the input join tables. Yannakakis
is also able to achieve a shrinkage on the input join tables, but
the pre-filtering power is 3.3× and 4.7× less than PredTrans on
SF1 and SF10 respectively since not all edges in the join graph are
traversed. Moreover, the semi-joins it relies on are computationally
expensive and dominate the entire execution time. As a result, the

predicate transfer phase in PredTrans outperforms the semi-join
phase in Yannakakis by 13× and 16× on both data sets respectively,
since bit operations used in Bloom filters are much cheaper than
the construction and probe of the hash tables.

NOPREDTRANS

BLOOMJOIN

YANNAKAKIS

PREDTRANS
0.0

0.5

1.0

1.5

2.0

Ex
ec

.T
im

e
(s

ec
)

(a) SF = 1

NOPREDTRANS

BLOOMJOIN

YANNAKAKIS

PREDTRANS
0

10

20

30

Ex
ec

.T
im

e
(s

ec
)

(b) SF = 10

Figure 5: Performance Breakdown on TPC-H Q5.

Join Order 1

Join Order 2

Join Order 3
0
1
2
3
4
5

Ex
ec

.T
im

e
(s

ec
)

(a) SF = 1

Join Order 1

Join Order 2

Join Order 3
0

10

20

30

40

Ex
ec

.T
im

e
(s

ec
) 265 1051

(b) SF = 10

Figure 6: Performance of Different Join Orders on TPC-H Q5.

Robustness. We next evaluate the sensitiveness on join orders
for different predicate transfer strategies. We pick three different
join orders and the result is shown in Figure 6. In both data sets,
PredTrans achieves the best performance and outperforms other



CIDR’24, January 14-17, 2024, Chaminade, USA Yifei Yang, Hangdong Zhao, Xiangyao Yu, Paraschos Koutris

predicate transfer strategies on all the join orders. Notably, the the
join order makes a much smaller performance variance in Pred-
Trans (up to 12%) compared to other strategies (up to 45×). We
further notice that for just the join phase, Yannakakis achieves
the similar robustness as PredTrans does. Both Yannakakis and
PredTrans is able to bound the size of the intermediate join re-
sults, making their join phase robust to different join orders. The
performance of the expensive semi-joins used in Yannakakis is un-
stable since the join tree construction is not deterministic, making
it overall highly sensitive to the join order. Conversely, the heuris-
tic adopted in the predicate transfer phase of PredTrans always
points to the same transfer topology and schedule regardless of the
join order.

5 CONCLUSION AND FUTUREWORK

A new join optimization, predicate transfer, is proposed in this
paper. Inspired by Yannakakis algorithm, predicate transfer gener-
alizes Bloom join to transfer table-local filters to pre-filter multiple
other tables. We laid out the design space of predicate transfer and
described the heuristics used in our prototype. Evaluation showed
an average 3.3× speedup over Bloom join on TPC-H benchmark.

Predicate transfer opens up substantial research opportunities,
including better heuristics in the predicate transfer schedule, deeper
theoretical analysis on the performance guarantees, and extending
the technique to parallel and distributed environment. Discussions
of these topics are left as future work.

REFERENCES

[1] 1999. TPC-H Benchmark. http://www.tpc.org/tpch/.
[2] 2014. Apache Calcite. https://calcite.apache.org/.
[3] 2016. Apache Arrow. https://arrow.apache.org/.
[4] 2016. Apache Parquet. https://parquet.apache.org/.
[5] 2019. Getting started with Oracle Database In-Memory Part IV - Joins In The IM

Column Store. https://blogs.oracle.com/in-memory/post/getting-started-with-
oracle-database-in-memory-part-iv-joins-in-the-im-column-store.

[6] 2020. Improved speed and scalability in Amazon Redshift. https://aws.amazon.
com/blogs/big-data/improved-speed-and-scalability-in-amazon-redshift/.

[7] 2021. Best Practices for Optimizing Your DBT and Snowflake Deploy-
ment. https://www.snowflake.com/wp-content/uploads/2021/10/Best-Practices-
for-Optimizing-Your-dbt-and-Snowflake-Deployment.pdf.

[8] 2022. Introducing Apache Spark™ 3.3 for Databricks Runtime 11.0.
https://www.databricks.com/blog/2022/06/15/introducing-apache-spark-
3-3-for-databricks-runtime-11-0.html.

[9] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison.
2007. Scalable bloom filters. Inform. Process. Lett. 101, 6 (2007), 255–261.

[10] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani, S.
Lightstone, and D. Sharpe. 2014. Memory-Efficient Hash Joins. Proc. VLDB Endow.
8, 4 (2014), 353–364.

[11] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and Evaluation of
Main Memory Hash Join Algorithms for Multi-Core CPUs. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data. 37–48.

[12] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422–426.

[13] Kjell Bratbergsengen. 1984. Hashing Methods and Relational Algebra Operations.
In Proceedings of the 10th International Conference on Very Large Data Bases.
323–333.

[14] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. 2007.
Improving Hash Join Performance through Prefetching. ACM Trans. Database
Syst. 32, 3 (2007), 17–es.

[15] Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li,
Ying Li, Donald Kossmann, Johannes Gehrke, and Tim Kraska. 2021. Instance-
Optimized Data Layouts for Cloud Analytics Workloads. In Proceedings of the
2021 International Conference on Management of Data. 418–431.

[16] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas
Neumann. 2020. Adopting worst-case optimal joins in relational database systems.
Proceedings of the VLDB Endowment 13, 12 (2020), 1891–1904.

[17] Joseph M. Hellerstein. 1998. Optimization Techniques for Queries with Expensive
Methods. ACM Trans. Database Syst. 23, 2 (1998), 113–157.

[18] Joseph M. Hellerstein and Michael Stonebraker. 1993. Predicate Migration: Op-
timizing Queries with Expensive Predicates. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data. 267–276.

[19] Manas R. Joglekar, Rohan Puttagunta, and Christopher Ré. 2016. AJAR: Ag-
gregations and Joins over Annotated Relations. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (San Fran-
cisco, California, USA) (PODS ’16). Association for Computing Machinery, New
York, NY, USA, 91–106. https://doi.org/10.1145/2902251.2902293

[20] Srikanth Kandula, Laurel Orr, and Surajit Chaudhuri. 2019. Pushing Data-Induced
Predicates through Joins in Big-Data Clusters. Proc. VLDB Endow. 13, 3 (2019),
252–265.

[21] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009. Sort
vs. Hash Revisited: Fast Join Implementation on Modern Multi-Core CPUs. Proc.
VLDB Endow. 2, 2 (2009), 1378–1389.

[22] Paraschos Koutris. 2011. Bloom Filters in Distributed Query Execution. Principles
of DBMS - University of Washington (2011).

[23] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (2015), 204–215.

[24] Alon Y Levy, Inderpal Singh Mumick, and Yehoshua Sagiv. 1994. Query optimiza-
tion by predicate move-around. In VLDB. 96–107.

[25] Lailong Luo, Deke Guo, Richard TB Ma, Ori Rottenstreich, and Xueshan Luo.
2018. Optimizing bloom filter: Challenges, solutions, and comparisons. IEEE
Communications Surveys & Tutorials 21, 2 (2018), 1912–1949.

[26] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal
join algorithms. Journal of the ACM (JACM) 65, 3 (2018), 1–40.

[27] Anna Pagh, Rasmus Pagh, and S Srinivasa Rao. 2005. An optimal Bloom filter
replacement.. In Soda. 823–829.

[28] Sukriti Ramesh, Odysseas Papapetrou, and Wolf Siberski. 2009. Optimizing
distributed joins with bloom filters. In Distributed Computing and Internet Tech-
nology: 5th International Conference, ICDCIT 2008 New Delhi, India, December
10-12, 2008. Proceedings 5. Springer, 145–156.

[29] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Management
of Data. 23–34.

[30] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. 1997. Heuristic and
randomized optimization for the join ordering problem. The VLDB journal 6
(1997), 191–208.

[31] Arun Swami and Anoop Gupta. 1988. Optimization of Large Join Queries. In
Proceedings of the 1988 ACM SIGMOD International Conference on Management of
Data. 8–17.

[32] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. 2011. Theory
and practice of bloom filters for distributed systems. IEEE Communications
Surveys & Tutorials 14, 1 (2011), 131–155.

[33] Jeffrey D. Ullman. 1988. Principles of Database and Knowledge-Base Systems, Vol.
I. Computer Science Press, Inc.

[34] Bennet Vance and David Maier. 1996. Rapid Bushy Join-Order Optimization
with Cartesian Products. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data. 35–46.

[35] Todd L Veldhuizen. 2014. Leapfrog triejoin: A simple, worst-case optimal join
algorithm. In Proc. International Conference on Database Theory.

[36] Yisu Remy Wang, Max Willsey, and Dan Suciu. 2023. Free Join: Unifying Worst-
Case Optimal and Traditional Joins. Proceedings of the ACM on Management of
Data 1, 2 (2023), 1–23.

[37] Yifei Yang, Matt Youill, MatthewWoicik, Yizhou Liu, Xiangyao Yu, Marco Serafini,
Ashraf Aboulnaga, and Michael Stonebraker. 2021. FlexPushdownDB: Hybrid
Pushdown and Caching in a Cloud DBMS. VLDB 14, 11 (2021), 2101–2113.

[38] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Proceed-
ings of the Seventh International Conference on Very Large Data Bases - Volume 7
(Cannes, France) (VLDB ’81). VLDB Endowment, 82–94.

[39] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking
Ahead Makes Query Plans Robust: Making the Initial Case with in-Memory Star
Schema Data Warehouse Workloads. Proc. VLDB Endow. 10, 8 (apr 2017), 889–900.
https://doi.org/10.14778/3090163.3090167

http://www.tpc.org/tpch/
https://calcite.apache.org/
https://arrow.apache.org/
https://parquet.apache.org/
https://blogs.oracle.com/in-memory/post/getting-started-with-oracle-database-in-memory-part-iv-joins-in-the-im-column-store
https://blogs.oracle.com/in-memory/post/getting-started-with-oracle-database-in-memory-part-iv-joins-in-the-im-column-store
https://aws.amazon.com/blogs/big-data/improved-speed-and-scalability-in-amazon-redshift/
https://aws.amazon.com/blogs/big-data/improved-speed-and-scalability-in-amazon-redshift/
https://www.snowflake.com/wp-content/uploads/2021/10/Best-Practices-for-Optimizing-Your-dbt-and-Snowflake-Deployment.pdf
https://www.snowflake.com/wp-content/uploads/2021/10/Best-Practices-for-Optimizing-Your-dbt-and-Snowflake-Deployment.pdf
https://www.databricks.com/blog/2022/06/15/introducing-apache-spark-3-3-for-databricks-runtime-11-0.html
https://www.databricks.com/blog/2022/06/15/introducing-apache-spark-3-3-for-databricks-runtime-11-0.html
https://doi.org/10.1145/2902251.2902293
https://doi.org/10.14778/3090163.3090167

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Bloom join
	2.2 Yannakakis algorithm

	3 Predicate Transfer
	3.1 Overview
	3.2 Predicate Transfer Phase
	3.3 Join Phase
	3.4 Extension to General Queries
	3.5 Cost Analysis

	4 Evaluation
	4.1 Experimental Setup
	4.2 TPC-H Performance
	4.3 Case Study — TPC-H Q5

	5 Conclusion and Future Work
	References

