
Oligolithic Cross-task Optimizations across Isolated Workloads∗

Eleni Zapridou

eleni.zapridou@epfl.ch

EPFL

Switzerland

Panagiotis Sioulas**

panagiotis.sioulas@epfl.ch

Oracle

Switzerland

Anastasia Ailamaki**

anastasia.ailamaki@epfl.ch

EPFL, Google

Switzerland, USA

ABSTRACT
Enterprises collect data in large volumes and leverage them to drive

numerous concurrent decisions and business processes. Their teams

deploy multiple applications that often operate concurrently on the

same data and infrastructure but have widely different performance

requirements. To meet these requirements, enterprises enforce re-

source boundaries between applications, isolating them from one

another. However, boundaries necessitate separate resources per

application, making processing increasingly resource-hungry and

expensive as concurrency increases. While cross-task optimizations,

such as data and work sharing, are known to curb the increase in

total resource requirements, resource boundaries render them in-

applicable.

We propose the principle of functional isolation: cross-task opti-

mizations can and should be combined with performance isolation.

Systems should permit cross-optimization as long as participating

tasks achieve indistinguishable or improved performance compared

to isolated execution. The outcome is faster, more cost-effective,

and more sustainable data processing. We make an initial step to-

ward our vision by addressing functional isolation for work sharing

and propose GroupShare, a strategy that reduces both total CPU

consumption and the latency of all queries.

1 INTRODUCTION
Data is increasingly important for producing value. Organizations

use data-sharing platforms (i.e., common infrastructure giving mul-

tiple systems access to shared data) more and more to facilitate

collaboration on data-driven projects both internally and with other

organizations and extract value, fueling various of their applications.

In this data economy, the ultimate goal is to maximize the extracted

value by enabling more and more users to submit a growing number

of increasingly complex data-intensive tasks.

Various teams and data practitioners run tasks that process the

same data but have different requirements and characteristics. The

characteristics stem from each task’s nature and include its type

(e.g., real-time, analytical, ML-based) and resource needs (e.g., CPU,

memory, bandwidth). The requirements are specified explicitly by

∗
Cross-task optimization techniques are “monolithic”, as they execute all tasks with

a single execution schedule, while resource isolation techniques that use a differ-

ent schedule per task are “polylithic”. We propose that systems should follow an

“oligolithic” strategy – they should utilize cross-task optimizations only when they do

not compromise performance isolation.

**Work done entirely at EPFL.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2024.

14th Annual Conference on Innovative Data Systems Research (CIDR’24), January 14–17,
2024, Chaminade, USA
2024.

Unconstrained
cross-task optimization

maximum total work

performance isolation

q1 q2 q3 q1 q2 q3q1 q2 q3

la
te

nc
y

minimum total work
Resource isolation

Figure 1: The red dot identifies the execution strategy that
minimizes total work while preserving performance isola-
tion. The dashed lines represent the latency requirements
for each query.

the users to satisfy their performance needs. They vary from re-

source reservations per user, group of users, or group of applications

to complex requirements such as desired accuracy and latency.

For example, consider the use case of analyzing e-commerce

client logs that are stored in a database shared across applications.

A real-time dashboard processes the logs to produce visualizations

based on actions from analysts. It issues short analytical queries

selecting only data for a specific time window, e.g., the last hour,

but demands sub-second latency to enable analysts to be productive.

Meanwhile, the service’s recommendation system uses a periodic

background job to analyze weekly trends for groups of similar

users. While this job has loose latency requirements (in the range

of hours), it submits queries that process all historical data and

could occupy the entire infrastructure for several minutes.

To satisfy the requirements of concurrent tasks, data-sharing

platforms adopt a resource-centric design. The system assigns a

specific subset of resources to each task based on its requirements.

The goal is to isolate tasks by enforcing resource boundaries be-

tween them so that one cannot affect the resources and, thus, the

performance of another. For the above example, boundaries ensure

that dashboard users experience short latency regardless of whether

the recommendation system’s queries are running.

Provisioning separate resources per task requires a large, expen-

sive, and energy-hungry infrastructure that must grow with the

level of concurrency. Exceeding the infrastructure’s capacity has

an adverse impact on tasks (e.g., the dashboard’s response time can

increase to the extent that it disrupts the analyst’s productivity).

Cross-task optimizations, such as data and work sharing, reduce

the total resource requirements but are prohibitive because they

can violate isolation and introduce unpredictable results, e.g., the

dashboard’s queries take minutes when running concurrently with

the recommendation query and finish in seconds otherwise.

Resource isolation is a means to an end. What matters to users

is achieving functional isolation — achieving performance metrics

https://orcid.org/0000-0002-5025-6835

CIDR’24, January 14–17, 2024, Chaminade, USA Eleni Zapridou, Panagiotis Sioulas**, and Anastasia Ailamaki**

that are at least equal or better than those of isolated execution,

rather than having exclusive resources, as long as security is guar-

anteed. Between resource isolation and unconstrained cross-task

optimization lies a full spectrum of execution strategies (illustrated

in Figure 1) that relax resource isolation and leverage some of the

cross-task optimization opportunities. On one end, the resource iso-

lation strategy respects the queries’ latency requirements but incurs

high total work. On the other end, the schedule that takes advan-

tage of all cross-optimization opportunities minimizes total work

but penalizes the fastest query. Crucially, many of the strategies be-

tween the two extremes achieve performance isolation. We propose

that systems should aim to find the strategy that minimizes total

work using cross-task optimizations given performance isolation

constraints (red point in Figure 1). This strategy reduces resource

consumption and improves performance when the infrastructure

is overcommitted. As task concurrency increases, systems can then

identify more optimization opportunities, becoming increasingly

more sustainable and cost-effective than isolated execution.

We test our vision for the use case of sharing work across an-

alytical queries. We propose GroupShare, an execution strategy

that achieves performance isolation and, at the same time, exploits

sharing opportunities, reducing the total processing time by up

to 6×. To do so, GroupShare finds, by using runtime monitoring,

sharing groups, that is, groups of queries that can meet the isola-

tion guarantees of each participating query when pooling their

resources to process a shared query plan.

Concretely, we make the following contributions:

• We propose the principle of functional isolation; systems

should use cross-query optimizations to decrease the overall

processing time while respecting performance isolation.

• We show that functional isolation for work sharing can be

achieved by partitioning queries into sharing groups.

• Building on the idea of sharing groups, we propose Group-

Share, an algorithm that exploits sharing while preserving

fair allocation of CPU time.

2 THE CASE FOR FUNCTIONAL ISOLATION
In the early 1960s, researchers had already acknowledged the need

for concurrent program execution and its performance implications

and proposed scheduling mechanisms to limit interference between

concurrent programs [15, 16]. The proposed concepts have been

formative in various domains, including operating systems, cloud

computing, databases, and "big data" stacks.

Databases and big data stacks achieve performance isolation

through resource allocation. For each task, these systems choose

a sequence of execution steps, then assign a portion of the overall

resources to each step and execute it using these specific resources.

Thus, the performance of each task depends solely on the execution

steps and its allocated resources and remains unaffected by other

concurrent tasks. For example, PostgreSQL [9], IBM DB2 [2], and

SAP HANA [18] spawn a number of OS threads or processes for

each request and rely on theOS’s fair schedulingmechanisms. Other

databases such as Umbra [40] and Microsoft SQL Server [7] directly

manage the machine’s CPU cores and allocate a time-share to each

query using stride scheduling. Big data systems such as Hadoop

and Spark rely on a resource negotiator such as YARN [39], Kuber-

netes [12], or Mercury [25] to fairly allocate specified requested

resources. Finally, cloud providers such as Google [6], Oracle [8],

and Amazon AWS [4] structure their pricing models based on re-

source reservations for at least one system resource, including CPU,

memory, and/or storage resources.

Allocating resources per task comes with a price; as concurrency

increases, the infrastructure must continuously grow to cover the

cumulative demand. Two decades ago, when concurrency was low

and single-machine databases were sufficient in most cases, this was

a reasonable price to pay for the separation of concerns. However,

this is no longer the case; Today’s organizations are deploying an

increasing number of data-driven applications with tens, hundreds,

or even thousands of concurrent tasks [1, 3, 5, 14], each tasked

with handling ever-expanding volumes of data. At the same time,

the rate at which the price-to-performance ratio of hardware re-

sources improves has slowed down [10, 22]. Consequently, coping

with the increasing demand doesn’t come for free with the hard-

ware evolution. The infrastructure must grow proportionally to

concurrency; otherwise, the quality of service will suffer, hindering

mission-critical operations.

2.1 Beyond (Pure) Resource Isolation
To contain the growing demand for resources, we need to rethink

siloing allocated resources. Cross-optimizing tasks saves resources

and offsets increasing concurrency. For example, in Microsoft’s data

centers, 45% of the jobs have overlapping computations, which, if

exploited, can save up to 40% of all machine hours [23]. Importantly,

as concurrency increases, the cross-optimization opportunities in-

crease as well. Cross-optimization techniques have been studied

at least as far as the 1980s [33] with recent techniques ranging

from machine learning-optimized [35] to heuristic-based strate-

gies [11, 13, 28]. However, these techniques risk interference, e.g.,

for two partially overlapping jobs, one short and one long-running,

computing the union of their results and filtering each answer sep-

arately penalizes the faster job. Thus, cross-optimization needs to

be constrained so that it respects performance isolation.

We propose that, instead of resource isolation, systems should

adopt functional isolation; they should cross-optimize tasks as long

as each task achieves better or equal performance compared to iso-

lated execution. In a sense, functional isolation encodes an incentive

for individual tasks to give up resource isolation. Systems should

provide the mechanisms for choosing which tasks should pool their

resources, cross-optimize, cross-execute, and hence profit.

Functional isolation is achieved by co-optimizing planning and

resource allocation across tasks and guarantees the isolation and

performance goals achieved through schedulers and resource man-

agers. This marks a clear departure not only from the existingmodel

that decouples planning and scheduling but also from recent ideas

that propose jointly determining each task’s query and resource

plan to maximize performance [24].

2.2 Use Case: Sharing across Isolated Workloads
In this section, we define functional isolation for the case of data

and work sharing. This is the first definition of functional isolation,

Oligolithic Cross-task Optimizations across Isolated Workloads CIDR’24, January 14–17, 2024, Chaminade, USA

Figure 2: Per-query latency and total execution time compar-
ison with different scheduling algorithms

which we believe will drive impactful research towards optimizing

the next-generation data-sharing and cloud platforms.

Let 𝑞1, . . . , 𝑞𝑛 be a set of queries to execute. Each query 𝑞𝑖 takes

processing time 𝑇 (𝑞𝑖) when using all the resources in the infras-

tructure. For simplicity, let us assume that all queries are submitted

at the same time. Each query’s latency 𝐿(𝑞𝑖) is defined as its end-

to-end time. Furthermore, let us assume that execution takes place

in a single machine and is in memory, and resource reservations

concern only the CPU. The above assumptions serve the ease of

presentation and can be lifted with a more complex formulation.

Performance isolation via scheduling: Concurrent queries
can vary significantly in performance, e.g.,𝑚𝑎𝑥𝑖𝑇 (𝑞𝑖) may be or-

ders of magnitude larger than𝑚𝑖𝑛𝑖𝑇 (𝑞𝑖). Fairness ensures graceful
degradation of query latencies proportional to the concurrency

level, providing predictability and a form of performance isolation.

Databases achieve fairnesswith respect to CPU allocation through

scheduling. Figure 2 shows, through a three-query example, the

impact of scheduling on performance isolation. Colored bars sig-

nify which query occupies the CPU at a certain moment, while

dashed arrows show the query’s latency. Intuitive approaches such

as First-In-First-Out (FIFO) scheduling, which executes queries in

the order of arrival, can arbitrarily penalize short-running queries.

Suppose the queries arrive in the order 𝑞1, 𝑞2, 𝑞3. A FIFO sched-

uler would execute query 𝑞2 only after 𝑞1 has finished. The user of

query 𝑞2 would experience orders of magnitude higher latency. Re-

ordering the queued queries to prioritize short-running queries can

address the problem but requires estimates derived during query

optimization, which are known to be error-prone.

An approach that does address fairness is to time-share the CPU

across queries to achieve what is called fair scheduling. Queries

take turns running on the CPU for a limited period of time, called

a quantum. By the end of the quantum, if the query has not been

completed, the query yields, and the CPU is given to the next query

in the ready queue. As shown in Figure 2, with fair scheduling, all

queries get 1/3 or higher percentage of the CPU. Fair scheduling
can be further extended to proportional share scheduling, which

allocates a specific fraction of the CPU to each query. Proportional

share scheduling algorithms include lottery scheduling [41], stride

scheduling [40, 42], and EEVDF [37]. Databases that use fair or

proportional share scheduling achieve performance isolation as

query latency is expected to be at most 𝐿(𝑞𝑖) ≤ 𝑇 (𝑞𝑖)
𝑠ℎ𝑎𝑟𝑒𝑖

, where

𝑠ℎ𝑎𝑟𝑒𝑖 is the time-share of the CPU requested by 𝑞𝑖 .

Shared execution Shared-execution techniques reduce total

processing time and, thus, resource consumption by detecting and

exploiting overlaps between concurrent queries. They are classified

in data and work-sharing approaches[21].

Data-sharing techniques exploit common data accesses across

queries. Disk-based databases like Microsoft SQL Server and Tera-

data [21], which are I/O-bound, use scan sharing to amortize the

cost of disk accesses. Cooperative scans [43] improve shared disk ac-

cess by scheduling I/O requests to maximize the effective bandwidth

and minimize latency penalties. BatchSharing aims to mitigate the

memory bandwidth bottleneck [31]. It is noteworthy that both

cooperative scans and BatchSharing aim to achieve fairness.

Work-sharing techniques exploit common operators across queries.

They use a shared query plan [11, 19, 21, 29, 35] to process all

queries, and, in recent systems, the Data-Query model [11, 13, 19,

27–29, 35] to efficiently share work between queries with the same

joins and different filters. The shared operators compute the union

of the results for the participating queries and route their output

to one or more parent operators. Choosing a shared plan has been

studied extensively in the context of multi-query optimization [32–

34], sharing-aware optimization [20, 35], and heuristics [11, 13, 28].

Prior work discusses sharing or not sharing queries based on se-

lectivity [20] or overlap [26], but it does not take into account the

individual query requirements. [38] decides to share or not incre-

mental queries based on final work constraints. We make a case for

cross-optimizing applications and tasks with diverse requirements

and characteristics while respecting isolation guarantees.

Sharing violates performance isolation:Using a shared global
plan to execute all queries might violate individual query require-

ments. For the queries of Figure 2, a shared query plan would use

a shared join operator processing 𝑅 Z 𝑆 and route its results to a

different parent for each query. This plan decreases total processing

time by approximately two times. However, all queries finish when

the shared join finishes, and so, the latency of 𝑞2 is drastically in-

creased compared to if it was executed independently using 1/3 of
the CPU, violating performance isolation. This is because most of

the processed intermediates belong to 𝑞1 and 𝑞3; these two queries

benefit from sharing and have the lowest latency in this case.

Functional isolation for sharing: Let us consider fair sched-
uling as the baseline for performance isolation. Sharing is only

permissible when it results in all queries finishing at least as fast

as they would with fair scheduling. From the user’s point of view,

the system must perform at least as well as it would using resource

isolation. We define the concrete conditions for functional isolation.

Assume that each query 𝑞𝑖 has requested a time-share 𝑠ℎ𝑎𝑟𝑒𝑖
of the CPU. We partition the queries in non-overlapping groups

𝐺1, . . . ,𝐺𝑚 such that ∪𝑚
𝑗=1

𝐺 𝑗 = {𝑞1, . . . , 𝑞𝑛} and run each group’s

shared plan using a time-share 𝑠ℎ𝑎𝑟𝑒
′
𝑗
. We denote each group’s

latency, which is also the latency of all participating queries, as

𝐿(𝐺 𝑗). In this setup, sharing achieves functional isolation if, for

each group, 𝐺 𝑗 , the following conditions hold:

(1) 𝐿(𝐺 𝑗) ≤ 𝐿(𝑞 𝑗𝑘),∀𝑞 𝑗𝑘 ∈ 𝐺 𝑗 .

(2) 𝑠ℎ𝑎𝑟𝑒
′
𝑗
≤ ∑

𝑞 𝑗𝑘
∈𝐺 𝑗

𝑠ℎ𝑎𝑟𝑒𝑞 𝑗𝑘
,∀𝑞 𝑗𝑘 ∈ 𝐺 𝑗

CIDR’24, January 14–17, 2024, Chaminade, USA Eleni Zapridou, Panagiotis Sioulas**, and Anastasia Ailamaki**

The objective is twofold: i) queries achieve the same or lower la-

tency compared to isolated execution, and ii) resource consumption

for each group is the same or lower than the aggregated resources

of individual tasks. Then, the processing time of a query in the

shared case is lower or equal to the isolated case:

𝑇 (𝐺 𝑗) = 𝐿(𝐺 𝑗) × 𝑠ℎ𝑎𝑟𝑒
′
𝑗 ≤ 𝐿(𝐺 𝑗) ×

∑︁
𝑞 𝑗𝑘
∈𝐺 𝑗

𝑠ℎ𝑎𝑟𝑒𝑞 𝑗𝑘

≤
∑︁

𝑞 𝑗𝑘
∈𝐺 𝑗

(𝐿(𝑞 𝑗𝑘) × 𝑠ℎ𝑎𝑟𝑒𝑞 𝑗𝑘
) ≤

∑︁
𝑞 𝑗𝑘
∈𝐺 𝑗

𝑇 (𝑞 𝑗𝑘) (1)

Groupings for which at least one of the inequalities holds are

superior to resource isolation. We call such groups sharing groups.
The surplus resources may be used to further improve performance,

reduce infrastructure costs, or boost properties such as availability

and elasticity. In the last case of the example in Figure 2, 𝑞1 and 𝑞3
form one sharing group, while 𝑞2 forms its own group. The groups

reduce both latency and total processing time.

3 SHARINGWITHOUT REGRETS
We introduce GroupShare, a hybrid scheduling-optimization al-

gorithm that partitions and executes queries into sharing groups,

providing at least as fast progress as fair scheduling and, thus, lower

latency and reducing the total CPU time. We first discuss the prac-

tical challenges that drive GroupShare’s design and then present

the algorithm.

3.1 Challenges
Finding groups of queries that can share work while respecting iso-

lation guarantees has two key challenges: scalability and accuracy.
Scalability: As there can be hundreds or thousands of concur-

rent queries, any scheduling algorithm needs to be efficient at that

scale. Exhaustively searching for the best grouping for a large num-

ber of queries is prohibitive both due to the large search space of

possible partitions and the overhead of validating whether each

group’s optimal shared plan accelerates the progress of all queries.

The number of all possible ways of partitioning n queries into

groups is:

𝑛∑︁
𝑘=1

𝑆 (𝑛, 𝑘) =
𝑛∑︁

𝑘=1

𝑘∑︁
𝑖=0

(−1)𝑘−1𝑖𝑛
(𝑘 − 𝑖)!𝑖!

where 𝑆 (𝑛, 𝑘) the Stirling number of the second kind and k the

number of groups. For example, even when processing 10 queries,

there are 115975 ways to partition the queries into groups, and

finding the optimal shared plan for each candidate group can take

several milliseconds or seconds. Running the queries without co-

optimization would require much less processing time than finding

the optimal grouping and plans.

GroupShare instead is opportunistic: by design, it avoids search-

ing for the optimal grouping of queries among all possible partitions.

Instead, it focuses on finding one partition that consists of sharing

groups, i.e., groups of queries where co-optimization is guaranteed

to bring a net benefit. Converging to a grouping with guarantees

is critical for production environments where predictability and

explainability are paramount.

Accuracy: Evaluating sharing opportunities a priori is chal-

lenging as it necessitates predicting query overlap, which relies

on estimating cost and intermediate cardinalities, known for their

Start from a
group with
all queries

Identify the
most

penalized
query

Check if it
should be

split

Move to
new group

Q1 Q2 Q3

SELECT * FROM R, S
WHERE R.a < 10 and

R.a = S.a

SELECT * FROM R, S
WHERE R.a = S.a

SELECT AVG(S.b) FROM R, S
WHERE R.a = S.a

Q1 Q2 Q3

Q2

Q1

Q2

Q3

Figure 3: Overview of re-grouping queries in GroupShare

inaccuracy. GroupShare instead employs runtime information from

trial-and-error execution. It measures the progress rate of the indi-

vidual queries and the shared plans and uses the measurements to

make grouping decisions. This way, similar to solutions for runtime

fair scheduling, it bypasses the need for a priori estimates.

3.2 Identifying Sharing Groups
GroupShare’s key idea is that any set of queries can be partitioned

into one or more sharing groups. Starting from a group contain-

ing all queries, GroupShare continuously regroups queries until it

converges into a partition that satisfies isolation guarantees for all

queries. Subsequently, it uses this grouping until all queries finish.

We first present GroupShare’s components: (a) grouping, (b)

monitoring, (c) stride scheduling, and (d) delta queries, and then,

we describe the algorithm itself.

Groups: At any given moment, queries are partitioned into a set

of groups. The groups are ordered by their rate of progress: the

first group makes the slowest progress (e.g., it contains more or

heavier queries), and the last group makes the fastest. Each group’s

queries progress in lockstep (at the group’s rate) because, at every

step, GroupShare schedules a group’s shared plan to process a slice

of data. In the trivial case, a group contains a single query.

Testing if a group is a sharing group is critical. Let group𝐺 𝑗 =

{𝑞 𝑗1 , . . . , 𝑞 𝑗𝑚 } be a set of queries, 𝑡𝐺 𝑗
the processing rate of 𝐺 𝑗 ’s

shared plan, and 𝑡𝑞𝑖 the processing rate of query 𝑞𝑖 in isolation –

monitoring estimates both. 𝐺 𝑗 is a sharing group if and only if:

𝑡𝑞 𝑗𝑘
≤ 𝑎 × 𝑡𝐺 𝑗

× |𝐺 𝑗 |, ∀𝑘 ∈ {1, . . . ,𝑚} (2)

where 𝑎 < 1 is a constant that controls the sensitivity of grouping.

If 𝑎 is low, GroupShare uses sharing only when the benefit is high.

GroupShare examines the existing groups and adjusts partition-

ing until it converges to having only sharing groups. Figure 3 shows

this iterative process for the queries of Figure 2. For each group,

GroupShare finds the most penalized query (defined in stride sched-
uling) and tests whether inequality 2 holds. If so, the query pro-

gresses fast enough to satisfy its isolation guarantees and remains

in the group; otherwise, it moves to the next group in line. If there

is no next group, the query forms a new group on its own. To amor-

tize bookkeeping, GroupShare removes and attaches queries at the

granularity of chunks with a few tens of thousands of rows.

Monitoring:Monitoring collects runtime information about the

processing rate of each query and each group. The rate is the ratio of

the number of rows in each slice of data over the required processing

time. Monitoring has two phases: (a) normal and (b) isolated. During

Oligolithic Cross-task Optimizations across Isolated Workloads CIDR’24, January 14–17, 2024, Chaminade, USA

the normal phase, GroupShare processes each group’s shared plan.

By contrast, during the isolated phase, it runs each query belonging

to the scheduled group separately and computes the processing

rate for each of these queries. The decision on which phase to use

is randomized: GroupShare chooses the normal phase with (high)

probability 𝑝 and the isolated phase with (low) probability 1 − 𝑝 .
Stride scheduling: At each step, GroupShare chooses a group to

schedule for a slice of data using a variant of stride scheduling [42],

a well-known scheduling algorithm for allocating a target fraction

of the CPU time to a work unit/query. It is also used in state-of-

the-art query scheduling. It measures the CPU allocation for each

query 𝑞𝑖 using a quantity called the pass 𝑃𝑖 . For simplicity, we

assume equal priorities across all queries, but priorities could be

easily added to our formulation. After processing a query for time

𝑓 ×𝑇 , where 𝑇 is the target duration for each slice of data, stride

scheduling updates the pass as follows:

𝑃𝑖 ← 𝑃𝑖 + 𝑓
In the long term, stride scheduling guarantees that CPU time

will be split equally among queries.

GroupShare adapts stride scheduling: after processing the shared

plan for 𝐺 𝑗 , it updates the pass of each query 𝑞 𝑗𝑘 using:

𝑃 𝑗𝑘 ← 𝑃 𝑗𝑘 + 𝑓 ×
𝑡𝐺 𝑗

𝑡𝑞 𝑗𝑘

Here, 𝑓 × 𝑇 ×
𝑡𝐺𝑗

𝑡𝑞𝑗𝑘
is the processing time that 𝑞 𝑗𝑘 would take

to make the same progress. Thus, we credit each query with the

equivalent CPU time in isolated execution. The group of the query

that has been credited the least CPU time is scheduled at each step.

CPU allocation is thus driven by the requirements of the query with

the least allocation from each group. This query still progresses

fast enough due to the sharing-group test.

Delta queries:When attaching a query to the next group, the new

group may have already processed some chunks ahead. To maintain

correctness, the newly attached query needs to process the chunks

between the cursors of its old and new groups. For these chunks,

GroupShare issues delta queries. Each delta query is represented

as a virtual group that is scheduled for processing every time the

respective query is the most penalized one. After its delta query

finishes, scheduling the query results in scheduling its group.

Overall, GroupShare’s execution flow is as follows: Initially, the

algorithm starts from a group that contains all running queries. At

every step of execution, the algorithm identifies the most penalized

query and its associated group or virtual group. If the group is in

between chunks, GroupShare checks if the query needs to move

to the next group; if so, it moves the query to a queue for the next

group, registers the delta queries, and restarts the scheduling step.

Similarly, a group starting a new chunk checks for queries that need

to be attached to it and only then starts processing the next chunk.

While the chunk has more data, the group takes a vector of data and

processes it. GroupShare chooses between the normal and isolated

phases for execution. In both cases, it runs the chunk, updates

throughput measurements, and updates each query’s stride.

The benefit of applying GroupShare to a batch of queries depends

on the benefit of sharing work within each sharing group. This, in

turn, depends on the overlap in the sharing group’s best shared

plan; the best shared plan is not necessarily the result of stitching

together the plans of individual queries, as reordering operators

may expose more overlap. The higher the benefit of sharing, the

more likely it is that GroupShare can share subexpressions without

penalizing any query, and hence, the more GroupShare can decrease

the total amount of work and the queries’ execution time. In the

worst case, GroupShare decides to execute queries individually

and performs similarly to fair scheduling, while in the best case,

all queries can be cross-optimized in a single group sharing all

common subexpressions.

Convergence: We prove that GroupShare converges to sharing

groups, assuming that the queries run for long enough (until it

converges) and that the processing rate of each query or group of

queries is constant and known. For ease of presentation, we assume

that stride scheduling schedules each query or group of queries for

exactly time T and do not take monitoring steps into consideration.

Lemma 1. Let there be groups of queries 𝐺1,𝐺2, . . . ,𝐺𝑚 , where
𝐺1, . . . ,𝐺𝑘−1 sharing groups. After GroupShare schedules𝐺𝑘 at most
|𝐺𝑘 | times, 𝐺𝑘 will be a sharing group as well.

Proof. We prove the lemma through induction on |𝐺𝑘 |, i.e., the
number of queries in group 𝐺𝑘 . Assume 𝑄 is the set containing all

queries.

For |𝐺𝑘 | = 1, 𝐺𝑘 is trivially a sharing group.

Let the lemma hold for |𝐺𝑘 | = 𝑝 . Then, we show that the lemma

also holds for |𝐺𝑘 | = 𝑝 + 1.
Let’s assume that𝐺𝑘 is not a sharing group. As groups𝐺1, . . . ,𝐺𝑘−1

are already sharing groups and remain so because the processing

rates are constant, GroupShare keeps these groups intact, and no

new query is added to 𝐺𝑘 .

Furthermore,𝐺𝑘 does not starve; it is eventually scheduled after a

finite amount of time. This is guaranteed by stride scheduling. Stride

scheduling chooses at each step the group 𝐺 𝑗 that contains the

querywith theminimumpass and increments the pass of each query

𝑞𝑖 in𝐺 𝑗 by
𝑡𝐺𝑗

𝑡𝑞𝑖
. Thus, as all query passes are greater or equal to the

pass of𝐺 𝑗 ’s querywith theminimumpass. Themaximumdifference

between the minimum passes of queries in other groups and the

minimum pass of 𝐺 𝑗 at the end of the quantum is𝑚𝑎𝑥𝑞𝑖 ∈𝐺 𝑗

𝑡𝐺𝑗

𝑡𝑞𝑖
=

𝑡𝐺𝑗

𝑚𝑖𝑛𝑞𝑖 ∈𝐺𝑗
𝑡𝑞𝑖

.

Group 𝐺 𝑗 will again be scheduled as soon as it contains, once

again, the query with the minimum pass. At each subsequent step,

one of the other𝑚 − 1 groups, 𝐺 𝑗 ′ is scheduled, and the passes of

all their queries will be incremented by at least

𝑚𝑖𝑛𝑞𝑖 ∈𝐺 𝑗 ′

𝑡𝐺 𝑗 ′

𝑡𝑞𝑖
≥ 𝑚𝑖𝑛𝑙≠𝑗 (𝑚𝑖𝑛𝑞𝑖 ∈𝐺𝑙

𝑡𝐺𝑙

𝑡𝑞𝑖
) =𝑚𝑖𝑛𝑙≠𝑗

𝑡𝐺𝑙

𝑚𝑎𝑥𝑞𝑖 ∈𝐺𝑙
𝑡𝑞𝑖

Thus, after scheduling group 𝐺 𝑗 ′ for at most

𝑛 =

𝑡𝐺𝑗

𝑚𝑖𝑛𝑞𝑖 ∈𝐺𝑗
𝑡𝑞𝑖

𝑚𝑖𝑛𝑙≠𝑗
𝑡𝐺𝑙

𝑚𝑎𝑥𝑞𝑖 ∈𝐺𝑙
𝑡𝑞𝑖

CIDR’24, January 14–17, 2024, Chaminade, USA Eleni Zapridou, Panagiotis Sioulas**, and Anastasia Ailamaki**

quanta, all of its queries will have a higher pass than the minimum

pass of 𝐺 𝑗 . We note that this finite amount of time is

𝑛 ≤
⌈
𝑚𝑎𝑥2

𝑞𝑖 ∈𝑄𝑡𝑞𝑖

𝑚𝑖𝑛2
𝑞𝑖 ∈𝑄𝑡𝑞𝑖

⌉
because

𝑡𝐺 𝑗

𝑚𝑖𝑛𝑞𝑖 ∈𝐺 𝑗
𝑡𝑞𝑖
≤

𝑚𝑎𝑥𝑞𝑖 ∈𝑄𝑡𝑞𝑖
𝑚𝑖𝑛𝑞𝑖 ∈𝑄𝑡𝑞𝑖

and

𝑚𝑖𝑛𝑙≠𝑗
𝑡𝐺𝑙

𝑚𝑎𝑥𝑞𝑖 ∈𝐺𝑙
𝑡𝑞𝑖
≥

𝑚𝑖𝑛𝑞𝑖 ∈𝑄𝑡𝑞𝑖
𝑚𝑎𝑥𝑞𝑖 ∈𝑄𝑡𝑞𝑖

After at most 𝑛 × (|𝑄 | − 1) scheduling steps (to account for

possible reconfigurations in groups𝐺𝑘+1, . . . ,𝐺𝑚),𝐺𝑘 will have the

query with minimum pass across all groups. Thus, after a finite

amount of time since 𝐺1, . . . ,𝐺𝑘−1 became sharing groups, 𝐺𝑘 is

scheduled. GroupShare identifies it as a non-sharing group and

moves its minimum-pass query to group𝐺𝑘+1. After the minimum-

pass query has beenmoved,𝐺𝑘 has 𝑝 queries and thus will become a

sharing group after being scheduled 𝑝 more times (𝑝+1 in total). □

Theorem 3.1. GroupShare converges to a set of sharing groups for
a set of queries 𝑄 after a finite amount of time.

Proof. We prove the theorem with induction over the number

of queries in Q.

For |𝑄 | = 1, 𝑄 is trivially one sharing group, so GroupShare

converges immediately.

Let’s assume that GroupShare converges for a set of queries with

|𝑄 | ≤ 𝑝 . Then, it also converges when 𝑄 = 𝑝 + 1.
Using the previous lemma, we know that GroupShare produces a

sharing group 𝐺1 after a finite amount of time. From that point on,

𝐺1 remains intact, and GroupShare only needs to turn the remaining

𝑝 + 1 − |𝐺1 | ≤ 𝑝 queries into sharing groups. Thus, GroupShare

converges. □

GroupShare iteratively evaluates the formed query groups until

it reaches a convergence point that upholds fairness guarantees.

Heuristics could be used to accelerate the convergence rate further

if needed. For example, an offline pre-processing step can be intro-

duced to partition queries into coarse groups based on the overlap

of the queries and the data distribution.

3.3 Implementation Details
We implement GroupShare on top of RouLette [35], an in-memory

analytical query engine that shares work by incrementally opti-

mizing the shared plan at runtime. Roulette’s efficiency has been

shown on Join Order Benchmark queries over real-world IMDB

data, as well as query batches with varying complexity. RouLette

changes query plans between data vectors, and thus, it is a natural

fit for GroupShare. We modify RouLette as follows. First, we im-

plement multiple cursors on scans, which enable different groups

to progress independently. Second, we replace RouLette’s simple

scheduling logic, which assigns a vector to a worker, with Group-

Share’s algorithm.

In cases where GroupShare converges to a single group contain-

ing all the queries, the performance of GroupShare would be the

same as the performance of Roulette. By contrast, in cases where

0

5

10

15

20

25

0 5 10 15 20 25

Ac
tu

al
 La

te
nc

y
(s

ec
)

Estimated Worst-case Latency (sec)

GroupShare - 1% GroupShare - 15% GroupShare - 40%
GroupShare - 90% FullShare - 1% FullShare - 15%
FullShare - 40% FullShare - 90% FairSched - 1%
FairSched - 15% FairSched - 40% FairSched - 90%

(a)

0

20

40

60

80

100

0 20 40 60 80 100

Ac
tu

al
 La

te
nc

y
(s

ec
)

Estimated Worst-case Latency (sec)

GroupShare - 1% GroupShare - 15% GroupShare - 40%
GroupShare - 90% FullShare - 1% FullShare - 15%
FullShare - 40% FullShare - 90% FairSched - 1%
FairSched - 15% FairSched - 40% FairSched - 90%

(b)

Figure 4: Comparison between each query’s achieved and
expected latency (latency in isolation × concurrency) when
running a) 4 queries, b) 16 queries.

GroupShare cannot use a single group for all queries because that

would violate the isolation guarantees, the total execution time of

GroupShare can be higher than that of Roulette, but the execution

time of all participating queries will be at least the same compared

to isolated execution. This behavior is illustrated in Figures 4 and 5.

We tune the system as follows: we set the probability for the

normal phase to 0.95 and the parameter 𝑎 to 0.9, and use 1024-row

vectors and 2
16
-row chunks.

3.4 Applicability and Limitations
GroupShare is designed for the in-memory scale-up setup discussed

in Section 2. Also, it assumes that the underlying system can switch

between plans at runtime. This is possible for systems using adap-

tive processing but is not a common capability across all databases.

GroupShare is meant as an initial effort to achieve functional iso-

lation in shared execution. It uses a simplified model for in-memory

processing and thus does not cover excessive demand for memory,

ad-hoc query arrivals, and caching optimizations. Furthermore, it

assumes that data distribution is the same across the table and may

rule out groupings that become beneficial in later chunks. We aim

to study these challenges in subsequent work.

4 EXPERIMENTAL EVALUATION
The experiments presented in this section show that: (i) Eagerly

sharing execution for all queries penalizes short-running queries

and benefits long-running queries. (ii) A group of queries can pro-

vide fairness using sharing if the queries have the appropriate char-

acteristics (e.g. correlation between queries). For high concurrency,

the full batch of queries is one such group. (iii) GroupShare exploits

Oligolithic Cross-task Optimizations across Isolated Workloads CIDR’24, January 14–17, 2024, Chaminade, USA

1

10

100

1000

4 8 16 32 64To
ta

l C
PU

 T
im

e
(s

ec
)

Number of Concurrent Queries

FairSched FullShare GroupShare

Figure 5: Comparison of total processing time as a function
of the number of concurrent queries.

sharing as group size is increased and achieves both fairness and

lower total processing time in all experiments.

Hardware All experiments took place on a server that has an

Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz with 2 sockets, 12(×2)
threads per socket, and 376GB. The experiments are in-memory, in

a single NUMA node, and used 12 threads.

Data and Workload We generate synthetic data and queries.

We use a fact table with 8 integer columns (1 for filter, 6 for join keys,

and 1 for aggregation) and 256𝑀 rows, and, for joins, 6 dimensions

with 100𝑘 rows each. The range of join keys is [0, 100𝑘) and the

range of filters is [0, 100). All queries contain a filter on the fact

table and 6 joins and only differ in their selectivity.

Execution and Scheduling StrategiesWe evaluate three dif-

ferent approaches: (i) FairSched, a fair scheduling approach that

uses stride scheduling; (ii) FullShare, which uses one shared query

plan for all queries utilizing all CPU time; and (iii) GroupShare,
the algorithm we introduce in this work.

4.1 Sharing-Fairness Trade-off
First, we demonstrate the sharing-fairness trade-off and show that

GroupShare reduces total processing time without penalizing any

query. We use 4 query classes with different selectivity (1%, 15%,

40%, and 90%). The workload contains an equal number of queries

from each class. We submit all queries at once, as a batch.

Figure 4 compares the actual latency for each query to the ex-

pected latency for fair scheduling, which we estimate as latency in
isolation× concurrency. The estimate is pessimistic for long-running

queries because as short-running queries finish, the former receives

more CPU time. A query’s CPU allocation requirement is respected

when the respective data point is below the 𝑦 = 𝑥 line. Figures

4(a) and (b) show runs with 4 and 16 queries, respectively. The

experiments represent the two extremes: in (a) FullShare hinders

fairness, whereas in (b) FullShare reduces latency for all queries

compared to FairSched.

In Figure 4(a), GroupShare converges to FairSched. With Full-

Share, the shortest and longest-running query share work despite

having an 11.5 : 1 processing time ratio, thus, the shortest-running’s

latency is increased by 2×. Note that FairSched also slightly penal-

izes latency. This is an implementation artifact: we use the same

shared filters for all execution strategies, and thus filtering cost

increases logarithmically with concurrency.

In Figure 4(b), GroupShare uses sharing for all queries. The con-

currency is high enough that sharing reduces latency for all queries,

by 1.7−6×, compared to FairSched. Thus, sharing overcompensates

the isolation guarantees of the queries, even short-running ones.

0

3

6

9

12

15

2 3 4 5 6 7 8

La
te

nc
y

(s
ec

)

Number of Concurrent Queries

FairSched - slowest short FairSched - long
FullShare - slowest short FullShare - long
GroupShare - slowest short GroupShare - long

(a)

0

2

4

6

8

10

12

2 3 4 5 6 7 8

La
te

nc
y

(s
ec

)

Number of Concurrent Queries

FairSched - slowest short FairSched - long

FullShare - slowest short FullShare - long

GroupShare - slowest short GroupShare - long

(b)

Figure 6: Latency comparison for each execution strategy
when queries have: (a) uncorrelated and (b) correlated filters.

Figure 5 plots the total time for processing all queries with each

strategy. This is the workload’s CPU consumption. We run up to 64

concurrent queries. FullShare decreases both the total processing

time and the rate of increase. GroupShare starts with performance

equal to FairSched, to respect isolation guarantees, but switches to

sharing in one group as soon as there are enough queries to both

achieve isolation guarantees and minimize processing time.

Takeaway: GroupShare respects isolation guarantees, whereas

FullShare may violate them. Also, by judiciously using sharing,

GroupShare achieves both lower latency for all queries and lower

total processing time compared to FairSched.

4.2 Intra-group Sharing
Next, we show the impact of query characteristics on grouping.

We use 2 query classes with the same template and 10% and 50%

selectivity, respectively. The workload contains one query from the

50% class, whereas the rest of the queries are from the 10% class.

Figure 6 shows the latency for each query class as concurrency

increases. It plots the latency of the long-running and the slowest

short-running query for each strategy. The long-running query’s

latency is also the end-to-end CPU time. In Figure 6(b), filters cover

half the filter attribute’s domain, and, in Figure 6(a), the full domain.

GroupShare converges to FairSched for low and to FullShare

for high concurrency. In between, it shares work between short-

running queries and runs the long-running one separately. It re-

duces the long-running query’s latency as well because, by reducing

processing time for short-running queries, sharing leaves more CPU

time for the long-running one. In Figure 6(a), GroupShare achieves

up to 2.1× lower latency for the short-running and 2.45× for the

long-running query compared to FairSched.

CIDR’24, January 14–17, 2024, Chaminade, USA Eleni Zapridou, Panagiotis Sioulas**, and Anastasia Ailamaki**

Virtual Infrastructure

Cross-task Optimization

Physical Infrastructure

Dashboard Data mining Reports

Resources

Client task
System task

Figure 7: Functional isolation can be supported through vir-
tualization. Rectangles show data-intensive logical tasks sub-
mitted by the user. Ovals depict system tasks that process
multiple client tasks at once using cross-task optimizations.
Circles show allocated resources for the task that encapsu-
lates them. The color of the circles represents the application
that the task serves, and for the case of system tasks, the
number and color of circles show the logical tasks that the
internal task processes.

Figure 6(b) shows that intra-group sharing is more effective when

queries are correlated: the decrease in latency is higher – namely up

to 2.4× for short-running and 2.9× for long-running queries. Also,

sharing across all queries becomes beneficial for lower concurrency.

This result motivates that grouping needs to be workload-driven

based on the characteristics of the queries involved.

Takeaway: GroupShare uses sharing within smaller groups

where isolation guarantees can be satisfied. This improves latency

even for non-shared queries as it allows allocating more CPU. Over-

all, appropriate grouping depends on the queries’ properties.

5 ADOPTING FUNCTIONAL ISOLATION
Native support for functional isolation requires each system com-

ponent that is involved in cross-task optimizations to be aware of

the guarantees they are expected to provide. Components should

be able to decide how and when to cross-optimize tasks while

respecting their requirements.

An architectural approach that would be easier to adopt is to

support functional isolation through virtualization, as depicted in

Figure 7. An intermediate layer receives client tasks and produces a

set of internal tasks that the system will process. Each system task

performs work for a group of client tasks or subtasks and is formed

such that it leverages cross-optimization using native primitives

of the system, e.g., writing shared join queries using native SQL

operations [30] and materialized views. The mapping of client tasks

to system tasks should be done by a cross-optimizer in the virtual-

ization layer. This way, the internal system components do not need

to be aware of the task requirements. In some applications, different

types of cross-task optimization techniques (e.g., jointly examining

reuse and work sharing [36]) interfere with one another, and thus

examining them holistically when choosing sharing groups can

lead to higher performance per query. However, the mapping of

client-to-system tasks may vary across system components. For in-

stance, two queries may belong to the same system task for memory

management, benefiting from shared caches, but to different ones

for the scheduling component, allowing independent scheduling.

Resource managers could be incorporated into this architecture

to enable the scheduling of heterogeneous applications with po-

tential co-optimization opportunities. However, resource managers

cannot discover the opportunities themselves. This can only be done

by the backend data processing framework, which may be shared

between one or more applications. The virtualization layer would

be responsible for translating the client tasks to the allocations that

must be accommodated by the resource manager.

In both cases of native support and virtualization, it is necessary

to support performance isolation in the first place. Additionally, if

incorrect optimizer decisions are possible, the optimizer should be

able to predict requirement violations (e.g., via a feedback loop) and

adapt the mapping of client to system tasks or fall back to isolated

execution, while the system must be able to adapt at runtime to

accommodate the re-optimizations. Techniques for runtime adap-

tation have already been studied in the context of adaptive query

processing [17].

Functional isolation requires no extra client-related considera-

tions. Widely used cloud providers [4, 6, 8] typically establish their

pricing models around SLAs that quantify the amount of resources

to be reserved. Functional isolation seamlessly aligns with such

resource SLAs but also with performance SLAs. An oligolithic sys-

tem can get the SLA as input, translate it into resource isolation

requirements, leverage cross-task optimization, and find an execu-

tion schedule so that the SLAs are met with minimum cost. The

only possible user-facing difference is exposing as cost savings the

resource savings due to under-the-hood cross-optimization.

6 CONCLUSION
Existing systems guarantee performance isolation by enforcing

resource barriers between concurrent tasks, but doing so, limits the

optimization space. We envision cost- and resource-efficient sys-

tems that exploit cross-query optimizations while satisfying each

task’s requirements. We showcase the feasibility of our vision for

the use case of work sharing: we propose GroupShare, an algorithm

that partitions queries into groups that can share sub-expressions

and reduces total processing while meeting isolation guarantees.

This is a first step towards a paradigm for cross-optimizing di-

verse co-existing applications in order to meet mission-critical per-

application requirements without painful tuning and at less cost.

The functional isolation principle is not limited to either the use

case of work sharing or the discussed solution. It can cover use

cases with a variety of optimizations, resources, and optimization

goals. For example, we can conceive a use case where multiple

applications run, each with their dedicated memory for caches

and auxiliary structures, to meet their respective stringent latency

requirements. Then, sharing caches and auxiliary structures to elim-

inate redundancy and save memory while meeting performance

requirements is a case of functional isolation. Similarly, in a differ-

ent use case where applications use techniques such as approximate

query processing and specify accuracy requirements, the reclaimed

memory can be used to boost accuracy rather than improve latency.

Oligolithic Cross-task Optimizations across Isolated Workloads CIDR’24, January 14–17, 2024, Chaminade, USA

REFERENCES
[1] [n. d.]. Apache Doris - User Stories. https://doris.apache.org/users/ Accessed:

2023-11-07.

[2] 2022. IBM DB2. https://www.ibm.com/docs/en/db2-for-zos/11?topic=threads-

how-db2-allocates. Accessed: 2023-11-07.

[3] 2023. AWS - Concurrent Scaling. https://docs.aws.amazon.com/redshift/latest/

dg/concurrency-scaling.html Accessed: 2023-11-07.

[4] 2023. AWS Pricing Calculator. https://calculator.aws/#/ Accessed: 2023-11-30.

[5] 2023. Databricks Customer Requests. https://community.databricks.

com/t5/warehousing-analytics/sql-warehouse-high-number-of-concurrent-

queries/td-p/7140 Accessed: 2023-11-07.

[6] 2023. Google Cloud SQL Pricing. https://cloud.google.com/sql/pricing Accessed:

2023-11-30.

[7] 2023. Microsoft SQL Server. https://learn.microsoft.com/en-us/sql/relational-

databases/thread-and-task-architecture-guide?view=sql-server-ver16. Accessed:

2023-11-30.

[8] 2023. Oracle Cloud Infrastructure Pricing. https://www.oracle.com/cloud/

pricing/ Accessed: 2023-11-30.

[9] 2023. PostgreSQL - Resource Consumption. https://www.postgresql.org/docs/

current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE Ac-

cessed: 2023-11-30.

[10] 2023. PostgreSQL - Resource Consumption. (2023). https://ourworldindata.org/

grapher/historical-cost-of-computer-memory-and-storage Accessed: 2023-11-

30.

[11] Subi Arumugam, Alin Dobra, Christopher M. Jermaine, Niketan Pansare, and

Luis Perez. 2010. The DataPath System: A Data-centric Analytic Processing

Engine for Large Data Warehouses. In SIGMOD.
[12] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.

2016. Borg, Omega, and Kubernetes: Lessons Learned from Three Container-

Management Systems over a Decade. Queue 14, 1 (jan 2016), 70–93. https:

//doi.org/10.1145/2898442.2898444

[13] George Candea, Neoklis Polyzotis, and Radek Vingralek. 2009. A Scalable, Pre-

dictable Join Operator for Highly Concurrent Data Warehouses. Proceeding of
the VLDB Endowment 2, 1 (2009).

[14] George Candea, Neoklis Polyzotis, and Radek Vingralek. 2011. Predictable per-

formance and high query concurrency for data analytics. VLDB J. 20 (04 2011),
227–248. https://doi.org/10.1007/s00778-011-0221-2

[15] E. F. Codd. 1960. Multiprogram Scheduling: Parts 1 and 2. Introduction and

Theory. Commun. ACM 3, 6.

[16] Fernando J. Corbató, Marjorie Merwin-Daggett, and Robert C. Daley. 1962. An

Experimental Time-Sharing System. In Proceedings of the May 1-3, 1962, Spring
Joint Computer Conference.

[17] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adaptive Query

Processing. Foundations and Trends® in Databases 1, 1 (2007), 1–140.
[18] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes

Rauhe, and Jonathan Dees. 2012. The SAP HANA Database–An Architecture

Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.
[19] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. 2012. SharedDB:

Killing One Thousand Queries with One Stone. Proceedings of the VLDB Endow-
ment.

[20] Georgios Giannikis, Darko Makreshanski, Gustavo Alonso, and Donald Koss-

mann. 2014. SharedWorkload Optimization. Proceedings of the VLDB Endowment.
[21] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. 2005.

QPipe: A Simultaneously Pipelined Relational Query Engine. In SIGMOD.
[22] John L. Hennessy and David A. Patterson. 2012. Computer Architecture - A

Quantitative Approach (5 ed.). Morgan Kaufmann.

[23] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018. Select-

ing Subexpressions to Materialize at Datacenter Scale. Proceedings of the VLDB
Endowment.

[24] Alekh Jindal, Lalitha Viswanathan, and Konstantinos Karanasos. 2019. Query

and Resource Optimizations: A Case for Breaking the Wall in Big Data Systems.

https://doi.org/10.48550/ARXIV.1906.06590

[25] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas, Kishore Chali-

parambil, Giovanni Fumarola, SolomHeddaya, Raghu Ramakrishnan, and Sarvesh

Sakalanaga. 2015. Mercury: Hybrid Centralized and Distributed Scheduling in

Large Shared Clusters. 485–497.

[26] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AJoin: Ad-Hoc Stream

Joins at Scale. Proceedings of the VLDB Endowment 13, 4.
[27] Sailesh Krishnamurthy, Michael J. Franklin, Joseph M. Hellerstein, and Garrett

Jacobson. 2004. The Case for Precision Sharing. Proceedings of the VLDB Endow-
ment.

[28] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman.

2002. Continuously Adaptive Continuous Queries over Streams. In SIGMOD.
[29] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald Koss-

mann. 2016. MQJoin: Efficient Shared Execution of Main-memory Joins. Proceed-
ings of the VLDB Endowment.

[30] Renato Marroquín, Ingo Müller, Darko Makreshanski, and Gustavo Alonso. 2018.

Pay One, Get Hundreds for Free: Reducing Cloud Costs through Shared Query

Execution. In Proceedings of the ACM Symposium on Cloud Computing (Carlsbad,

CA, USA) (SoCC ’18). 439–450.
[31] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas, and GuyM. Lohman.

2008. Main-Memory Scan Sharing for Multi-Core CPUs. Proceeding of the VLDB
Endowment 1, 1 (2008).

[32] Prasan Roy, Srinivasan Seshadri, S Sudarshan, and Siddhesh Bhobe. 2000. Efficient

and extensible algorithms for multi query optimization. In SIGMOD.
[33] Timos K Sellis. 1988. Multiple-query optimization. ACM Transactions on Database

Systems (TODS).
[34] Kyuseok Shim, Timos Sellis, and Dana Nau. 1994. Improvements on a Heuristic

Algorithm for Multiple-Query Optimization. Data Knowl. Eng. 12, 2.
[35] Panagiotis Sioulas and Anastasia Ailamaki. 2021. Scalable Multi-Query Execution

Using Reinforcement Learning. In SIGMOD. ACM, New York, NY, USA.

[36] Panagiotis Sioulas, Ioannis Mytilinis, and Anastasia Ailamaki. 2023. Real-Time

Analytics by Coordinating Reuse and Work Sharing. arXiv:2307.08018 [cs.DB]

[37] I. Stoica, H. Abdel-wahab, Kevin Jeffay, S.K. Baruah, J.E. Gehrke, and C.G. Plaxton.

1997. A Proportional Share Resource Allocation Algorithm for Real-time Time-

shared Systems.

[38] Dixin Tang, Zechao Shang, WilliamW. Ma, Aaron J. Elmore, and Sanjay Krishnan.

2021. Resource-Efficient Shared Query Execution via Exploiting Time Slackness.

In SIGMOD.
[39] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed,

and Eric Baldeschwieler. 2013. Apache hadoop YARN: Yet another resource

negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing,
SoCC 2013. Association for Computing Machinery (ACM), United States.

[40] Benjamin Wagner, André Kohn, and Thomas Neumann. 2021. Self-Tuning Query

Scheduling for Analytical Workloads. In SIGMOD.
[41] Carl Waldspurger. 1996. Lottery and Stride Scheduling: Flexible Proportional-

Share Resource Management. (1996).

[42] C. A. Waldspurger and E. Weihl. W. 1995. Stride Scheduling: Deterministic
Proportional- Share Resource Management. Technical Report. USA.

[43] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. 2007. Cooperative

Scans: Dynamic Bandwidth Sharing in a DBMS. VLDB Endowment.

https://doris.apache.org/users/
https://www.ibm.com/docs/en/db2-for-zos/11?topic=threads-how-db2-allocates
https://www.ibm.com/docs/en/db2-for-zos/11?topic=threads-how-db2-allocates
https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html
https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html
https://calculator.aws/#/
https://community.databricks.com/t5/warehousing-analytics/sql-warehouse-high-number-of-concurrent-queries/td-p/7140
https://community.databricks.com/t5/warehousing-analytics/sql-warehouse-high-number-of-concurrent-queries/td-p/7140
https://community.databricks.com/t5/warehousing-analytics/sql-warehouse-high-number-of-concurrent-queries/td-p/7140
https://cloud.google.com/sql/pricing
https://learn.microsoft.com/en-us/sql/relational-databases/thread-and-task-architecture-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/thread-and-task-architecture-guide?view=sql-server-ver16
https://www.oracle.com/cloud/pricing/
https://www.oracle.com/cloud/pricing/
https://www.postgresql.org/docs/current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE
https://www.postgresql.org/docs/current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1007/s00778-011-0221-2
https://doi.org/10.48550/ARXIV.1906.06590
https://arxiv.org/abs/2307.08018

	Abstract
	1 Introduction
	2 The Case for Functional Isolation
	2.1 Beyond (Pure) Resource Isolation
	2.2 Use Case: Sharing across Isolated Workloads

	3 Sharing without regrets
	3.1 Challenges
	3.2 Identifying Sharing Groups
	3.3 Implementation Details
	3.4 Applicability and Limitations

	4 Experimental evaluation
	4.1 Sharing-Fairness Trade-off
	4.2 Intra-group Sharing

	5 Adopting Functional Isolation
	6 Conclusion
	References

