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ABSTRACT
Modern cloud environments, characterized as resource-dynamic
with new developments, see prevalence in ephemeral resources.
Such resources can be unstable in resource availability, experienc-
ing both anticipated and unforeseen terminations during utilization.
Their prices, although attractive, can be fluctuating over time. The
presence and prevalence of ephemeral resources in cloud envi-
ronments pose a challenge to current cloud-native databases and
workloads, which requires a rethink of design principles and neces-
sitates the new primitives: query preemption, resource arbitration,
and cost tolerance. In this paper, we design Ratchet, a resource-
adaptive query execution framework, to realize the identified prim-
itives. Ratchet enables adaptive query suspension and resumption
at various granularities, resource arbitration for complex and het-
erogeneous workloads, and a fine-grained pricing model to utilize
dynamic cloud resources without the risk of unexpectedly high
prices. We also explore emerging directions to inspire future re-
search.

1 INTRODUCTION
Data-intensive systems are migrating towards cloud-native archi-
tectures that offer low-latency, consistent, and pay-as-you-go query
answering [23], exemplified by cloud-native databases. This extends
beyond being merely a deployment trend; it represents a critical
point prompting a reconsideration of the core architectural deci-
sions that form the foundation of these systems, which is driven
by one of the key factors, the increasing prevalence of ephemeral
cloud resources.

First, ephemeral cloud resources are dynamic in availability with
potential terminations. Spot instances, offering short-lived comput-
ing infrastructure, have been prevalent for a while. Such resources
may experience some terminations when resource providers need
them back due to limited availability or other constraints. New de-
velopments are amplifying the bursty capacity. For instance, server-
less platforms offer applications the convenience of employing
lightweight Virtual Machines (VMs) that have limited run-time,
memory capacity, and addressable addresses [19]. Recent efforts
from the database community have shown how to develop a query
processing framework on top of a serverless platform [32]. Another
emerging cloud paradigm is “zero-carbon clouds” [8], where data
centers can be completely ephemeral as they are largely powered
by renewable sources that are not always stable for continuous
supply. Hence, cloud-native databases designed for zero-carbon

clouds must effectively ready themselves to handle the transient
nature of resources.

Second, the prices of ephemeral cloud resources can be attractive but
significantly fluctuate over time. Although the prices of ephemeral
cloud resources are typically appealing during off-peak times com-
pared with classic reserved and on-demand ones [2], such prices
have been reported to skyrocket dramatically, reaching 200 to 400
times the normal rate during periods of peak demand [34]. Thus,
even if users usually expect low latency, there is an increased de-
mand for economically viable solutions, provided they do not sig-
nificantly compromise performance. A growing number of users
are beginning to favor cost-conscious options that may result in
slightly increased latency or stale results [1].

Therefore, the prevalence of ephemeral cloud resources poses a
new opportunity for systems designers to reduce the operational
costs of database systems, yet the dynamic and fluctuating nature
of such resources is often incompatible with current cloud-native
database designs and workloads. From the perspective of design
principles, the convention of databases pre-reserving what are as-
sumed to be stable resources to maintain low latency has become
less applicable in these resource-dynamic environments; further-
more, charging users through a pay-as-you-go model may not
always be practical, considering the ephemerality of resources and
the user’s desire to evade peak times for money efficiency. From
the perspective of workloads, with the recent proliferation of data-
driven applications, many organizations have increasingly complex
and heterogeneous workloads, including both long-running and
short-running queries [17, 26], where long-running queries may
occupy resources for extended periods and are not readily suited
for ephemeral resources. This can lead to significant delays for
shorter-running queries that might have otherwise been completed
promptly with sufficient resources. Many of these long-running
queries can often be progressive as well, where an iterative loop
repeatedly refines a result until the desired completion criterion
is met – these are the so-called iterative and progressive queries
[24]. To keep allocating limited and dynamic resources to queries
that have already achieved significant progress may, under certain
conditions, curtail the efficient utilization of these resources for the
rest of the workload.

Considering the trend towards ephemeral cloud resources and
the challenges they introduce, we believe it is beneficial to rethink
the design principles of cloud-native databases, and thus, we pro-
pose three primitives:
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Primitive 1: Query Preemption. The feasibility of permitting queries
to constantly consume ephemeral cloud resources is limited because
(1) the resources are dynamic and infeasible to be reserved and sus-
tained for a prolonged period, and (2) the attempt to continuously
allocate ephemeral resources to long-running queries, particularly
when they yield diminishing returns, can be counterproductive.
Thus, such long-running queries ought to be paused when neces-
sary or beneficial. This primitive fosters more efficient and flexible
query execution by transforming a single long-running query into
a sequence of shorter ones. This is also advantageous in scenarios
where partial results are acceptable or meaningful, such as approxi-
mate query processing or deep learning training.
Primitive 2: Resource Arbitration. Given the ephemeral resources
that fluctuate in availability and monetary cost, "how many re-
sources a query needs?", a question answered by existing resource
reservation approaches, no longer holds substantial value. Instead,
the emergent question prompted by this primitive is: "is it worth
allocating resources to a particular query?". Answering this ques-
tion necessitates a sophisticated mechanism that can adaptively
determine if, when, how much, and for how long a query should be
allocated resources. This decision should consider multiple factors,
such as user needs, available resources, and the progress of each
query at various times.
Primitive 3: Cost Tolerance. Users have diverse monetary cost tol-
erances. Low latency with high cost may not be the best option for
all of them, particularly those who prioritize cost-efficiency over
speed. However, waiting until the resources become stable or the
end of peak periods to avoid high costs is not an ideal solution
either. Hence, a more fine-grained pricing model becomes vital,
which not only allows users to trigger query execution whenever
sufficient resources are available but also provides the opportunity
to circumvent unanticipated spikes in resource prices.

To realize the identified primitives, we design Ratchet, a novel
resource-adaptive query execution framework for cloud-native
databases that can be readily deployed to the environment with
ephemeral cloud resources. We further describe three prototypi-
cal and exemplary components in Ratchet. Specifically, we design
(1) an adaptive query execution framework, which enables query
suspension and resumption at various granularities, (2) a resource
arbitration mechanism, responsible for determining resources allo-
cation for query suspension and resumption during runtime, (3) a
cost model that provides users with a more granular set of cloud
resources utilization and pricing options. Furthermore, we discuss
some promising research directions inspired by Ratchet.

2 RATCHET
We elaborate on the three proposed primitives.

2.1 Query Preemption
Query preemption entails the ability to pause a running query in
a partially complete state, thereby releasing resources for other
jobs that could use them more efficiently. The preempted query
can be resumed later when its continuation is considered beneficial.
Thus, for efficient query preemption, we present an adaptive query
suspension and resumption that holds the potential to substantially

improve the flexibility of query execution in cloud-native databases,
especially with ephemeral resources.

The original concept of query suspension and resumption is
proposed to create a query suspension plan for a pull-based model,
involving a combination of persisting current state and reverting to
previous checkpoints based on the overhead of state serialization
to disk [7]. This method presents certain constraints, such as both
the suspended and resumed queries requiring the same resources
and database state and a query plan being executed as a single
thread. We revisit this concept and believe that a novel solution is
necessary to accommodate the new trends and realize the proposed
primitives.

We take an initial step by designing a novel adaptive query sus-
pension and resumption framework by integrating different strate-
gies across various granularities. The redo strategy and process-
level strategy represent two opposing points on the spectrum of
query suspension and resumption. The redo strategy, which is
grounded in recovery mechanisms [27, 29], re-executes a query
that was prematurely terminated before attaining its final results;
whereas the process-level strategy allows a query to be suspended
and resumed at any given time by capturing and persisting all the
intermediate data of query execution and the context data of the
process where the query is associate with. In between the redo and
process-level strategy, three strategies can facilitate suspending
and resuming queries at the data batch, operator, and pipeline lev-
els. Specifically, the data batch-level strategy places checkpoints
between data batches during query execution, analogous to the
established checkpoint mechanism in streaming-style systems [3].
These checkpoints serve as resumption points in cases of unex-
pected termination. The operator-level strategy, inspired by the
early query suspension and resumption mechanism [7], enables
query suspensions to occur when some operators are completed
during query execution. The pipeline-level strategy enables the
query suspension and resumption for multi-threads pipeline-driven
query execution and provides more flexibility (e.g., different re-
source configurations) when resuming queries.

Each aforementioned suspension and resumption strategy pos-
sesses distinct characteristics, and we proposed five metrics for a
clear portrait from various perspectives:
• Agility is the speed at which the suspension can be triggered, i.e.,

how quickly the suspension process can start after the suspension
request is initiated

• Capacity measures the amount of intermediate data and states
needed to be persisted during query suspension.

• Adaptivity designates whether the strategy can adaptively uti-
lize the available resources for query resumption, regardless
of whether the available resources surpass or fall short of the
resources during the suspension of the query.

• Complexity evaluates the development efforts to achieve such
a strategy, e.g., whether modifying the existing data systems or
importing additional toolkits is necessary.

• Preservability indicates the progress a strategy can preserve
when potential resource terminations happen, i.e., how much
processing progress of a query can be retained when employ-
ing the suspension and resumption strategy to handle potential
terminations during query execution.
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Agility Capacity Adaptivity Complexity Preservability

Redo Terminate at
anytime

No intermediate data &
state

Redo queries with
available resources No additional efforts Lost all progress

Data Batch-Level
Suspend & Resume

Suspend until some
data batch processed

Checkpoints after
data-batch processing

Resumption with
available resources

Partition data and
determine checkpoints

Lost progress since last
persisted data batch

Operator-Level
Suspend & Resume

Suspend until some
operator complete

Persisted intermediate
data & state of operator

Resumption needs same
resources as suspension Modified data systems Lost progress since

last persisted operator

Pipeline-Level
Suspend & Resume

Suspend until some
pipeline complete

Persisted intermediate
data & state of pipeline

Resumption with
available resources Modified data systems Lost progress since

last persisted pipeline

Process-Level
Suspend & Resume

Suspend anytime at
process level

Persisted intermediate
data & state of process

Resumption needs same
resources as suspension

Import additional
toolkit Preserved all progress

Table 1: Analysis of suspension & resumption strategies

We further analyze the strategies using the proposed metrics
in Table 1. The redo strategy permits the termination of a query
at any time without persisting any intermediate state for query
resumption, which implies no processing progress will be retained.
It re-runs the query using currently available resources when a
predicated or unforeseen termination happens, thus further devel-
opment or changes are unnecessary. The process-level suspension
and resumption strategy, typically relying on additional tools for
operation at the process level, facilitates the suspension of queries at
any given moment. This strategy can pause the query and preserve
the current processing progress, retaining all intermediate data and
contextual states of the process. However, the practice of "storing
everything" presents two significant downsides. First, the volume
of persisted data can be exceedingly large, potentially leading to
extra latency. Second, it restricts the resumption of processes and
queries to the same resource configurations (e.g., the number of
hardware threads and the allocated memory size) that were in use
at the time of suspension. The data batch-level strategy involves
the suspension of query execution after the processing of one or
multiple data batches. This strategy aims to retain intermediate data
in a checkpoint-like manner following the completion of each data
batch processing stage so that the query progress can be preserved
at the batch level if a suspension is triggered and finished before
terminations occur. The operator-level strategy enables individ-
ual physical query operators to execute lightweight checkpointing
based on their specific semantics and should facilitate the coor-
dination of checkpoints among operators through a dependency
management mechanism. This strategy permits suspension dur-
ing query execution, maintaining progress at the level of query
operators. It also necessitates additional development of the query
execution engine and other components in cloud-native databases.
The pipeline-level strategy offers a different approach by preserv-
ing the intermediate data and states of each pipeline in the query
plan for resumption, which implies that suspension and data per-
sistence can only occur once certain pipelines have concluded. This
approach can reduce the volume of data that needs to be stored but
only suspend queries at specific points. Furthermore, this strategy
also demands data systems alterations, as it modifies how queries
are executed in normal pipeline-driven execution engines.

When dealing with complex and heterogeneous workloads in
cloud environments with ephemeral resources, the adaptive suspen-
sion and resumption of queries at different granularities become
crucial. Ratchet achieves this objective by utilizing different query
suspension and resumption strategies.We describe the functionality
of Ratchet and detail two representative strategies: pipeline-level
and process-level strategy.

2.1.1 Query Preemption Principles.

Ratchet determines query suspension and resumption strategies
based on two principles: (1) query suspension with an approximate
time window and (2) query resumption with different resources.
Query suspension with approximation. A prevalent assump-
tion in query suspension is the fixed and predetermined time point
for suspension. However, this assumption may not always be valid
in many real-world applications. For instance, accurately predicting
the exact timing of resource availability in zero-carbon clouds or
serverless computing is often challenging. Instead, it is more reason-
able to have an approximate awareness of when the resource will
become unavailable. Hence, the query can be suspended, preserving
its processing progress before potential termination occurs.
Query resumption with available resources Some existing ap-
proaches for query resumption are hindered by a key constraint:
they must resume queries with the identical resource configura-
tion as when they were suspended. This constraint substantially
curtails the flexibility in query resumption. For example, resuming
a suspended query demanding the same resource level as at the
point of suspension is not always achievable when the currently
available resources prove to be inadequate. Within the multi-tenant
databases where query scheduling is frequent and vital, this not
only impedes the query resumption process but also results in less
efficient resource utilization, leading to an overall increase in la-
tency for the tenants. Thus, it is crucial and beneficial to maximize
all accessible resources for query resumption or migration.

The principles of Ratchet are practical as they align with two
emerging trends. Firstly, while it is impossible to anticipate query
suspensions in cloud environments with absolute certainty, they
can often be predictable with a rough timeframe. Secondly, in typ-
ical resource-dynamic environments, it is not uncommon for the
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resource configuration at the time of query suspension to differ
from that at the time of resumption.

Ratchet can take as input a termination time window and a
probability, jointly determining a potential termination point, along
with resource configurations for resumption. Specifically, Ratchet
accommodates the termination point through a timewindow [𝑡𝑠 , 𝑡𝑒 ]
with a predefined probability 𝑝 or a tailored probability function,
𝜋 (𝑡𝑠 , 𝑡𝑒 ), where 𝜋 can be substituted by a probability distribution or
an equivalent function. Thus, the query suspension and resumption
are invoked by:

db.execute_suspend(query, suspend_loc, 𝑡𝑠, 𝑡𝑒, 𝑝)
db.execute_suspend(query, suspend_loc, 𝑡𝑠, 𝑡𝑒, 𝜋)
db.execute_resume(query, resume_loc, resource_conf)

Here, 𝑝 and 𝜋 refer to a termination probability and a probabil-
ity function, respectively. 𝑠𝑢𝑠𝑝𝑒𝑛𝑑_𝑙𝑜𝑐 represents the location for
persisting intermediate data and state during a suspension. The
persisted intermediate data located in 𝑟𝑒𝑠𝑢𝑚𝑒_𝑙𝑜𝑐 and a specific
resource configuration 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑐𝑜𝑛𝑓 are indicated so that Ratchet
can adopt it for query resumption.

2.1.2 Pipeline-level Suspension & Resumption.

Many modern database systems exploit many cores to execute
queries, which is best exemplified by multi-threads pipeline-driven
query execution [13, 22]. This execution mode divides a query plan
into several pipelines based on pipeline breakers, with each pipeline
being executed using multiple threads to enhance parallelism. Each
thread maintains a local state to store intermediate data of this
thread for a pipeline. Each pipeline owns a global state to merge
all the thread-level intermediate data when the pipeline is finalized
and generate processed results for the subsequent pipeline. This
centralized-style approach positions pipeline breakers as natural
points for suspension and resumption. Essentially, persisting the
global state of a pipeline is equivalent to capturing the pipeline’s
intermediate data, thereby providing a safe point at which to sus-
pend queries without losing substantial progress. Likewise, it is
convenient to resume a query using the persisted global state.

The pipeline-level strategy can be implemented by extending
the existing pipeline-driven query execution engines [31, 33], such
as serializing/deserializing the intermediate data of a pipeline, and
evaluating the dependency of the resumed pipeline in a query.

2.1.3 Process-level Suspension & Resumption.

When suspending a query, the process-level strategy suspends
the running process where the database and query are active and
subsequently checkpoints the entire state of the process to non-
volatile storage such as hard disk. This checkpointed data can be
used to restore the process and resume the query from the point of
suspension.

Nevertheless, this strategy can lead to an exceptionally large vol-
ume of checkpointed data, as it not only stores the state of the query
and database but also captures all information required to restore
the process, such as process context and system data. Moreover,
this strategy is typically unable to alter the resource configuration
upon process resumption since the context information, e.g., the
number of threads and the amount of allocated memory, are also
captured during the process suspension. The implementation and

execution of the process-level strategy typically necessitate the
management of operating system processes.

2.2 Resource Arbitration
Resource arbitration is a novel adaptive scheduling paradigm that
can continuously preempt and reallocate resources. It is critical
in Ratchet since query preemption is only worthwhile if the bene-
fits of reallocating the preempted resources exceed the overhead
of preemption and the loss associated with the preempted query,
which is analogous to context switching. In comparison to classic
scheduling methods, resource arbitration needs to consider various
factors, such as cloud resources availability, characteristics of dif-
ferent queries (e.g., query completion criteria), the progress of each
query, and specified users’ needs.

Due to the ephemeral availability and fluctuating prices of cloud
resources, resource arbitration for queries happens in an iterative
way, resulting in the queries being processed iteratively either by
design or inherently, as illustrated in Figure 1a. Specifically, Ratchet
evaluates ongoing and preempted queries at each iteration, such
as assessing the overhead associated with suspending an ongoing
query and estimating the resource consumption for resuming a
suspended query. These evaluations could inform the strategy for
query preemption, Ratchet would opt for the redo strategy if the
predicted suspension is expected to occur just moments after the
execution has started or the combined cost of persisting the inter-
mediate data and the performance overhead induced by suspension
and resumption surpasses the potential loss of progress and the
expense of re-running the query. Conversely, Ratchet should favor
the pipeline-level suspension and resumption strategy if the esti-
mated suspension point is following the completion of a specific
pipeline or the cost of preserving the intermediate data is lower
than the potential loss of progress in the current pipeline. Ratchet
can also select the appropriate strategy even when the available
resources for resuming the query differ from those at the time of
suspension.

Time

Iterative Processing

Ac
cu

ra
cy

(a) Iterative processing

Time

Diminishing Returns

Ac
cu

ra
cy

(b) Diminishing returns

Figure 1: Iterative queries with diminishing returns

Ratchet is also designed to handle complex and heterogeneous
workloads. For instance, one feature of resource arbitration is the ca-
pability to manage queries that demonstrate diminishing returns, as
depicted in Figure 1b. For such queries, the query progress improve-
ment between starting and ending points is not linear. Specifically,
the first several iterations can already provide a rough idea of the
final result, whereas the last iteration only contributes marginal
improvements.
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Thus, in certain scenarios, it is valuable to keep refining the query
results by allocating sufficient resources continuously, as plotted
in Figure 2a. However, in other scenarios, it may be beneficial to
early-suspend queries exhibiting diminishing returns and reallo-
cate resources to queries that promise more significant progress
in a shorter timeframe. For instance, as depicted in Figure 2b, re-
allocating the resources to two new AQP jobs could elevate their
accuracies to 87% and 85%, but only marginally improves the accu-
racy of the current AQP job from 90% to 96%.

Spending 20 iterations to achieve additional 6% accuracy  

Approximate query processing 
for 30 iterations: 90% acc

Approximate query processing 
for 50 iterations: 96% acc

(a) Keep allocating resources to the job with diminished return

Spending 20 iterations to achieve two more AQPs at 87% and 85% accuracy, respectively

Approximate query processing for 30 
iterations: 90% acc new AQP-1: 87% acc new AQP-2: 85% acc

(b) Re-allocating resources to new jobs

Figure 2: Motivational cases for resource arbitration

2.3 Cost Tolerance
Ratchet’s cost tolerance model offers users a more granular set of
cloud resource utilization and corresponding pricing options. For
further elucidation, we provide an example depicted in Figure 3.

Process-level suspensions start

Termination Time Window T

Process-level
P(suspend finish): 100% 

t1 t2 t3

Process-level
P(suspend finish): 60% 

Process-level
P(suspend finish): 30% 

Pipeline-level
P(suspend finish): 70% 

p1 p2

Pipeline-level
P(suspend finish): 40% 

Query 
Execution

Query 
Execution

Termination Time Window T

Process-level suspensions complete

Pipeline-level suspensions start Pipeline-level suspensions complete

Termination Time Window T

Query 
Execution

A potential termination point π(T)

Figure 3: Query execution with potential termination using
redo, pipeline-level, and process-level strategy

Consider a query 𝑞 that will suspend for a potential termination
point that is determined by a probability distribution 𝜋 over a

time window 𝑇 , using three strategies: redo strategy, pipeline-level
strategy, and process-level strategy.

As demonstrated in Figure 3, the redo strategy re-executes the
query𝑞 when a termination occurs at 𝜋 (𝑇 ), which introduces poten-
tial latency 𝜋 (𝑇 ). The pipeline-level strategy enables query suspen-
sion upon the completion of each pipeline. Thus, the pipeline-level
strategy can successfully suspend 𝑞 at 𝑝1 and 𝑝2 with associated
probabilities 70% and 40%, i.e., 𝑃 (𝑝1 + 𝑑

𝑝2
𝑞 < 𝜋 (𝑇 )) = 70% and

𝑃 (𝑝2 + 𝑑
𝑡3
𝑞 < 𝜋 (𝑇 )) = 40%. The process-level strategy allows for

the suspension of query 𝑞 at multiple time points such as 𝑡1, 𝑡2,
𝑡3. Suspending 𝑞 at 𝑡1 ensures a 100% probability of successful sus-
pension and persistence of intermediate data since 𝑃 (𝑡1 + 𝑑

𝑡1
𝑞 <

𝜋 (𝑇 )) = 100% where 𝑑𝑡1𝑞 is the duration of persisting the interme-
diate data of 𝑞 at 𝑡1 and 𝜋 (𝑇 ) is the termination point based on
the time window 𝑇 and the distribution 𝜋 . However, if the process-
level strategy attempts to suspend 𝑞 at 𝑡2 or 𝑡3, there exists a risk of
complete suspension only occurring after reaching the termination
point, thereby resulting in the loss of progress. Specifically, the
risk of suspending at 𝑡2 and 𝑡3 are 60% or 30%, respectively, that is,
𝑃 (𝑡2 + 𝑑𝑡2𝑞 < 𝜋 (𝑇 )) = 60% or 𝑃 (𝑡3 + 𝑑𝑡3𝑞 < 𝜋 (𝑇 )) = 30%.

A schedule can be presented with the execution options and
allowed to indicate whether it accepts the suspensions at various
points, e.g., 𝑡1 or 𝑝2. For instance, it is reasonable that a more com-
petitive price may be available to users willing to suspend their
queries at all potential points since it enhances the probability of se-
curing available resources in the cloud environments and avoiding
periods of peak utilization.

3 RESEARCH DIRECTIONS
Suspension-Oriented Databases. For environments where dis-
ruptions or terminations could be regular, a system would need
suspendable and resumable queries as a first-class citizen. This
necessitates a thorough revamp of numerous layers and compo-
nents within existing data systems, thus opening a broad range of
research opportunities.

Reshaping classic operators for query suspension and resump-
tion is a promising research direction. Considering sort operators or
sort-based operators, such as sort-merge join, maintaining cursors
for sorted data is appealing, which could be an effective means of
tracking the progress of query processing and reducing the cost
associated with suspension and resumption. It is also challenging
to redesign transaction management. For instance, introducing
a new transaction status such as “suspend” or adding a new step
when executing a transaction needs to be carefully considered, with
the imperative of maintaining the ACID properties. Suspendable
query optimization also presents a significant opportunity as it
demands a balance between efficient query execution and respon-
sive suspension. Each phase in canonical query optimization can
be reconstructed to take suspension and resumption into account.
For example, a suspension-oriented optimizer could transform the
original plan into a suspendable one, generate an execution plan
that considers potential suspension at each operator, and estimate
the plan’s cost by adding the underlying overhead of suspension
and resumption.
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Pay-As-You-Suspend. The prevalent pay-as-you-go pricing mod-
els in cloud environments typically factor in resource usage, data
freshness, latency, etc. There is an inherent trade-off among these
factors [1], suggesting that in certain scenarios, it is reasonable to
compromise on latency to decrease costs or enhance the quality
of results. Incorporating query suspension and resumption could
redefine this pricing model, transitioning towards a more flexible
pay-as-you-suspend.

Pricing models in cloud-native applications are usually influ-
enced by various factors, with peak time resource utilization being
a particularly significant yet often overlooked determinant [34].
With query suspension and resumption, users are offered more
execution options to circumvent peak times, thereby reducing over-
all costs. Query suspension and resumption can also help the in-
teractive query latency [32] for serverless computing to further
minimize costs by identifying the most suitable suspension points
while sustaining acceptable interactive latency. This allows users to
obtain resources at more competitive prices without significantly
compromising service quality in cloud environments.
Fine-grained and Interactive Debugging. The idea of pausing
data processing for debugging purposes is intuitively attractive.
One relevant work proposed a mechanism to pass messages be-
tween operator-oriented actors for pausing query execution to
examine specific variables without persisting the intermediate data
for suspension and resumption [21].

The query suspension and resumption introduce an enhanced,
more fine-grained opportunity for debugging, particularly for long-
running queries that are often challenging to troubleshoot using
only final results. For example, suppose a suspension occurs at
the pipeline or operator level, and the related intermediate data
is serialized and persisted; this allows developers, including data
engineers and scientists, to perform not only a broad verification
of aggregated results but also some tuple-by-tuple checks for unob-
trusive errors using the serialized intermediate data. An additional
advantage of query suspension and resumption is the opportunity
for interactive debugging with dynamic data. As the intermediate
data are persisted, it opens up the possibility for developers to ma-
nipulate this data, such as replacing key variables or aggregated
results. This capability enables proactive evaluation of the remain-
ing segments of the query plan or execution and further allows to
conduct of trial runs for swift debugging.

4 RELATEDWORK
Query Scheduling. It is an integral part of the data systems de-
ployed in cloud environments. A prime example is multi-tenant
databases that permit constrained resources to cater to multiple
database tenants simultaneously [14]. One of themost critical duties
in multi-tenant databases is ensuring that each tenant has adequate
resources to manage requests within a specific timeframe, often re-
ferred to as a Service Level Objective (SLO). Existing approaches in-
clude resource isolation, which reserves a fixed or minimal amount
of required resources [30], and intelligent tenant placement [25].
However, it becomes progressively challenging to manage this duty
as long-running queries become increasingly prevalent since they
can saturate the virtualized resources. For example, existing meth-
ods for scheduling long-running queries typically either attempt

to reserve substantial resources for these queries, potentially has-
tening resource saturation, or try to reposition the queries, which
consequently increases their latency. Recent work [24] can preempt
some long-running jobs during execution in favor of others.

The establishedmethods always consider the cloud resources sus-
taining and stable, while Ratchet assumes resources are ephemeral
and dynamic. Ratchet can also significantly improve existing so-
lutions. This is because, when suspension and resumption are em-
ployed, a long-running query can be viewed as a series of smaller
tasks, thereby facilitating more efficient query scheduling and re-
source management.
Database Migration. Cloud-native database systems are designed
and built to leverage the cloud’s elasticity, automation, andmanaged
services [23]. Although scaling out cloud database services is appeal-
ing [5], database migration, which helps move users’ database and
analytics workloads within cloud environments, is inevitable. The
state-of-the-art approach, live database migration, aims to migrate
database services with minimal service interruption and negligible
performance impact [36]. It primarily adopts two strategies: itera-
tive copying [10, 12] and dual execution [15, 20]. Iterative copying,
as in a similar vein to Ratchet, typically suspends all active trans-
actions on the source during migration and iteratively transfers
the database cache and the state of active transactions, thereby
enabling the migration destination to commence with a hot cache
[11, 35]. State migration is also common in streaming databases
due to its critical role in the reconfiguration of stateful operators.
One straightforward method is the "stop-and-restart", akin to the
redo strategy. This method involves temporarily halting program
execution, safely transferring the state during the computational
pause, and restarting the job once state redistribution is complete,
which commonly leverages existing fault-tolerance mechanisms
within the systems [4, 6]. For many reconfiguration scenarios, only
a small set of operators need to undergo state migration; operators
not engaged in the migration can continue without disruption, and
fault-tolerance checkpoints can be employed for state migration
[16, 28]. This method can be optimized by subdividing the state
and migrating the partitions [18].

Ratchet is orthogonal to live or state migration and enhances
them in environments with ephemeral cloud resources. For instance,
Ratchet allows query migration rather than full database migration
by using the pipeline-level suspension and resumption strategy.
This offers a better chance for live migration when the resources
are ephemeral since the migration of queries is far less resource-
intensive than relocating the full database states due to smaller
intermediate states for serialization and transfer.
High Availability & Fault Tolerance. High availability refers to
the database systems’ ability to avoid loss of service by minimizing
downtime, which is desirable for cloud infrastructure. State replica-
tion is a commonly used technique for achieving high availability
[9], which typically copies all the pages of memory that change
on the active host and transmits them to the backup host at each
checkpoint. With modern hardware, such as RDMA (Remote Direct
Memory Access), replication-based high availability can be accom-
plished by directly updating records on remote backup servers,
bypassing the need for remote CPU involvement [38]. The recent
advancement in Write-ahead Log (WAL) can provide tuple-level
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granularity data version control in replication protocols, such as
Paxos, for achieving high availability [39]. Ensuring fault tolerance
is essential for cloud-native databases as well. To achieve this, vari-
ous methods have been proposed, such as providing checkpoints
at stateful operators, which combines the results from multiple
data sources [3]. Another method involves partitioning the query
execution graph into a collection of tasks, persisting the result of
each task as it is executed [37].

Ratchet share a similar intuition; however, a distinguishing dif-
ference is that suspensions in Ratchet are either known or es-
timable, enabling informed decision-making in Ratchet. Neverthe-
less, Ratchet can be viewed as a unique resilience strategy for high
availability and fault tolerance queries. It achieves this by suspend-
ing queries at various levels: data batch, operator, pipeline, and
process, thereby guaranteeing query progress even in unstable
environments.

5 CONCLUSION
Cloud environments with dynamic and ephemeral resources, cou-
pled with complex and heterogeneous workloads, as well as the
growing emphasis on cost-efficiency among users, present new
primitives to cloud-native databases: query preemption, resource-
arbitration, and cost tolerance. Making an initial step, we design
Ratchet, a resource-adaptive query execution framework designed
to adaptively suspend and resume queries at various granulari-
ties, arbitrating resources for the queries and offering a broader
spectrum of pricing options. We also explore several promising yet
challenging future research directions. Although we are in the early
stages of this exciting journey, this promising field of study holds
immense potential to revolutionize the efficiency and flexibility of
cloud-native databases in resource-dynamic environments.
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