
Database Kernels: Seamless Integration of
Database Systems and Fast Storage via CXL

Sangjin Lee
1

Alberto Lerner
1

Philippe Bonnet
2

Philippe Cudré-Mauroux
1

1
University of Fribourg

2
University of Copenhagen

Switzerland Denmark

ABSTRACT

Flash memory is the de facto standard for data persistence in data-

intensive systems. Despite its benefits, this type of memory has at

least one severe disadvantage: it is offered only as part of tightly

closed Solid-State Drives (SSDs). To access an SSD, applications

need to resort to one of many possible I/O frameworks, which

themselves are wrappers around a block interface abstraction, the

NVMe standard. These levels of indirection impact how applications

are structured and prevent them from benefiting from the full power

of Flash-based devices.

In this paper, we argue that SSDs should instead interact with ap-

plications via CXL. CXL is a new technology driven by an Intel-led

consortium that allows systems to maintain coherence between a

host’s memory and memory from attached peripherals. With CXL,

a device can expose a range of Flash-backed addresses through the

server’s memory. One implementation option is to allow applica-

tions to read and write to that range and let the device convert

them to Flash operations. In our SSD, however, we pick a different

option. The device exposes what we call a Database Kernel (DBK)

through a CXL-backed memory range. Read/writes against a kernel

would trigger database-centric computations that the kernel would

perform inside the device. We show examples of DBKs to support

different database functionalities and discuss their benefits. We

believe that CXL and Database Kernels can support a new gen-

eration of heterogeneous database platforms with unprecedented

efficiency, performance, and functionality.

1 INTRODUCTION

Storage layers API galore. Applications nowadays can access

many different memory types, ranging from caches, DRAM (local

and remote), Persistent Memory (ditto), and NAND Flash. This

breadth of alternatives is necessary because each memory type sup-

ports a storage layer with a distinct size, speed, latency, persistence,

and cost trade-off. Since no single memory type can outperform all

the others in all criteria, having many storage layers gives applica-

tions some necessary flexibility.

Dealing with most of those storage layers is relatively straight-

forward. For instance, caches and DRAM are transparent to appli-

cations; they see these layers as a continuous memory region that

can be directly read and written with simple loads and stores in-
structions. However, this simplicity is sacrificed when applications

require persistent memory. The storage layers providing persistence

come with much heavier abstractions.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2024. 14th Annual Conference on

Innovative Data Systems Research (CIDR ’24). January 14-17, 2024, Chaminade, USA.

CPU

CXL

PCIe5

Database System

Database
Kernels

Memory
Expanded
Memory

SSD

Figure 1: CXL allows a host’s memory to be expanded by a

peripheral device. Both host and device can update the mem-

ory, i.e., CXL guarantees coherence. Database Kernels use

the memory to provide services to the database by changing

the semantics of specific regions of CXL memory. Writing to

a particular area may use a low-latency data path—useful

for logging, for instance. Reading from another area may

return the result of a table scan instead of the table itself.

Reading/Writing to a third area may decompress/compress

the contents along the way.

Currently, the best persistent memory option is arguably NAND

Flash, the underlying storage medium of SSDs. To use fast SSDs,

and thus Flash, an application must resort to NVMe and, most

likely, an additional I/O framework to issue fast block reads and

writes [9]. These layers force applications to be structured around

asynchronous API calls instead of the much simpler load/store
instructions. Even with these APIs, properly coupling a database

system with an SSD requires much effort and may not unlock the

device’s entire performance [15].

CXL as a storage layer unifier. Recently, a technology called

Compute Express Link (CXL) [7] emerged that can bring back

simplicity. CXL promises to allow memory of any type sitting on

peripheral cards or even in remote machines to be accessed directly

by applications as if they were local DRAM. At its heart, CXL is a

cache coherence protocol [31]. For decades, these protocols have

allowed multi-socket servers to offer applications a unified view

of memory. These protocols, however, have been closely guarded

and have all been proprietary. CXL’s most significant advantage is,

arguably, that it is public. It promises to support interoperability

across different manufacturers’ devices.

This allows third parties to build, for instance, so-called memory
expanders, PCIe form factor daughter cards that contribute extra

memory to a host, be it Intel- or AMD-based, or any future server

that would support the protocol [24, 29]. Figure 1 (top) depicts this

scenario. CXL characteristics are already known [33], and major

hyperscalers, such as Microsoft and Meta, have already announced

potential adoption plans [21, 23].

CIDR’24, January 14-17, 2024, Chaminade, USA Sangjin Lee, Alberto Lerner, Philippe Bonnet, and Philippe Cudré-Mauroux

SSD storage can join CXL but do more than memory expan-

sion. The CXL standard, however, does not clearly address how to

incorporate a persistence storage layer such as the one provided by

an SSD. Flash has widely different characteristics than DRAM and

requires completely different maintenance procedures. Even so, one

can imagine that a CXL memory expander could simply mask these

differences and use Flash to back a CXL memory address range.

An I/O against a Flash-backed CXL address would be somehow

converted into an I/O against Flash. Put differently, an application

would not need intermediate frameworks to access this device and

could thus have a more natural structure. This semantics is viable

and is one of the CXL-Flash integration alternatives proposed by

this paper and some prototypes [14, 28].

This paper, however, goes beyond this level of integration. We

introduce a new CXL-Flash coupling option that allows parts of

a database system to be implemented in the device, in what is

commonly referred to as Near-Data Processing (NDP) [2]. Storage

devices have been steadily gaining such capabilities [10, 11, 18,

19]. We call our new abstraction Database Kernels (DBK). DBK

leverage the CXL technology to export an address space to the

database system. However, instead of implementing a 1:1 mapping

into Flash, I/Os against this area trigger computations inside the

device. Figure 1 also depicts this possibility.

TheDBK abstraction allows moving different aspects of database

systems into the device. For instance, early predicate execution

can be implemented as a DBK. The device could take a predicate

description through an address within the CXL-backed window

and present a materialized view of the result in the rest of the area.

As with other kernels, we expect the execution to consume fewer

resources (e.g., transfers), to be faster, and to liberate the host CPU

for other tasks. We will discuss how different classes of DBKs can

extend the database functionality into the device.

To execute DBKs, we proposed a new SSD architecture. This SSD

is more modular than a traditional one and opens access to some

of the device’s internal interfaces. The interfaces are designed to

shield non-specialized programmers from unnecessary intricacies

while allowing them to develop NDP database functionality.

The structure of this paper follows its contributions, which are

summarized below:

• We start by briefly explaining the main CXL tenets and present

techniques to extend the use of CXL to storage devices (Section 2).

• We introduce the concept of Database Kernels as a means to ex-

ecute data-intensive tasks in a near-data-processing fashion and

show a device architecture to support such kernels (Section 3).

• We present the different types of CXL features that can be lever-

aged by DBKs (Section 4).

• We show examples of DBK in the context of database systems

(Section 5).

• We discuss the viability of implementing Database Kernels

devices in practice (Section 6).

• We enumerate the research questions that require further in-

vestigation to realize Database Kernels supporting devices

(Section 7).

We discuss related work in Section 8 and conclude in Section 9.

2 BACKGROUND & MOTIVATION

Memory Coherence and Caching. Applications perceive mem-

ory as a continuous range of addresses that can be freely accessed.

Providing this level of abstraction in the modern memory hierarchy

is not trivial. The issue is that modern CPUs have many cores, each

with a private cache. When several cores access a given memory

address simultaneously, the data at the given address may be copied

and possibly updated in multiple caches. The discipline that gov-

erns how cores access data copies for the same memory address is

called Memory (or Cache) Coherence.

Formally, coherence can be defined in various ways through

invariants [31]. A simple definition is the following: (1) writes to

the same memory location are serialized; and (2) every write

is eventually made visible to all cores
1
. Informally, a typical im-

plementation of coherence allows many copies of a piece of data

to exist in different caches, provided no core modifies them. If a

core wants to modify its copy, it must acquire an exclusive version,

invalidating all existing copies before proceeding.

Such an implementation relies on two components. The Direc-
tory Controller keeps track of which memory addresses are cached,

by whom, and in which state. The Cache Controller requests cache
addresses to the directory controller and receives invalidation re-

quests from it. Figure 2 (left) depicts a simplified implementation

of this architecture. Note that this implementation scales well to

multi-socket systems, by associating a Directory Controller to each

socket and a Cache controller to each cache. The memory addresses

are assigned to Directory Controllers in such a way that each Cache

Controller can tell if a request should be directed to the local or a

remote Directory Controller. Figure 2 (left) depicts this scenario.

CXL versions and Device Types. The first version of CXL, called

1.1, extends Memory Coherence to caches located on local peripher-

als. We are starting to see the first products emerging in the market

that support that CXL version, e.g., servers [12] and memory ex-

panders [28]. Two additional versions of CXL are already ratified.

CXL 2.0 enables single-level switching, i.e., Memory Coherence is

supported across multiple hosts and multiple devices connected

through a single switch. CXL 3.0 extends Memory Coherence to

multiple switches over various interconnects and fabrics protocols.

CXL also adopts the concept of a Directory and a Cache control-

lers—although it uses different terminology— dividing the message

types that make up the protocol into two. The messages originating

from the Cache Controller form the subprotocol named cxl.cache.
The messages originating from the Directory controller form the

cxl.mem sub-protocol. A peripheral can implement only the cxl.
cache protocol as a Type 1 device, both protocols as a Type 2 device,
or only the cxl.mem protocol as a Type 3 device.

Figure 2 (right) depicts a Type 3 device. It is suitably called a

memory expander because its goal is to provide additional memory

to a server without caching the latter’s memory. In other words,

only CPU cores on the server side will cache contents of thememory

the device is providing. For that reason, it only needs to implement

cxl.mem. The figure shows that the device implements a Directory

Controller—called a Device Controller here.

1
Note the emphasis on a single memory location. The discipline that governs the order

of accesses to multiple addresses is a different one: Memory Consistency [25]. Memory

coherence and consistency are orthogonal concepts.

Database Kernels: Seamless Integration of Database Systems and Fast Storage via CXL CIDR’24, January 14-17, 2024, Chaminade, USA

Cache
Controller

Directory
ControllerCache

Core
load/stores

Get/Put Data/Ack

Memory

Directory
Controller

Data/Ack

Memory

symmetric
interconnect

CPU 1 CPU 2

Cache
Controller

Directory
ControllerCache

Core
load/stores

Get/Put Data/Ack

Memory

Device
Controller

Data/CmP

Memory

CXL.mem
asymmetric
interconnect

CPU 1 CXL Memory
Expander Device

MemRd/
MemWr

①

② ③

①

② ⑤③

③

④

Figure 2: (Left) Coherence across sockets: To access or modify the contents of a memory address, a core brings a copy of it to its

cache 1○. This can be triggered by issuing a load or a store instruction. Upon receiving the instruction, the Cache Controller

issues a request to either get a copy or put (write) its copy of the modified content from/back to memory 2○. The Directory

Controller receives this message and executes the required memory access, either sending a copy of the read data to the Cache

Controller or acknowledging that the modified data was written 3○. The Cache Controller can then signal to the core that the

instruction is complete. Note that if the address required were held by a remote Directory Controller, the Cache Controller

would have targeted it instead 3○. (Right) Coherence with a memory expander device: The Cache Controller asks or sends a

cache line as before but is unaware of who is backing that address. Upon noticing that the request is for the expanded memory

area, the Directory Controller issues the proper command to the Device Controller 3○, which in turn interacts with the local

memory 4○ and responds. It is the Directory Controller that sends the cache line or the acknowledgment back as if the line

accessed was local 5○.

Curiously, CXL imposes a hierarchy of Directory Controllers.

A Cache controller cannot talk directly with a Device Controller

because it does not know whether it is accessing a range of memory

that it manages. The Directory Controller on the host mediates all

communications. This type of coherence protocol is called asymmet-
ric. Note that in Figure 2 (left), we portray a symmetric coherence
protocol; there is no hierarchy between the Directory Controllers

of each CPU. There have been debates on the relative merits of the

approaches. CXL proponents argue that asymmetric protocols are

simpler. Symmetric protocol proponents argue that more balanced

systems may be built if every peripheral that offers memory to

the system controls its own memory. It seems, however, that the

Industry decided to proceed with asymmetric protocols.

A naive type 3 Flash-based CXL device. The standard recognizes

memory expanders, but nothing in it constrains what type of mem-

ory can back the address range the expander adds to the Directory

Controller. In fact, recent versions of the standard even stipulate

ranges of tolerable latency for transactions (request-response mes-

sage pairs) issued against the device. Some of these ranges are well

within the response times of NAND Flash-based devices. Naturally,

one can conceive of a Type 3 device whose address range would be

backed by that kind of memory and, therefore, be persistent (e.g.,

Samsung’s recent Memory-Semantics SSD Prototype [28]).

Although the exercise of building such a storage device is inter-

esting, we think it would deliver subpar response times. As we will

substantiate shortly, the device would only be notified of a write

operation when it is about to complete, leaving very little time

to hide the Flash-memory latency. Instead, we claim that a device

with this functionality is better realized by a Type 2 device that

is allowed to hold a cache—and implement a cache controller—of

its own. Cache Coherence here is a means to give early notice of

on-going write operations to the NAND-based device.

3 DEVICE ARCHITECTURE

We propose a storage device that supports simple and efficient ac-

cess to expanded memory (including Flash—but not only) through

memory reads and writes, and rich semantics associated to opera-

tions on a given memory range.

CXL Integration and Storage Options. Our storage device is a

CXL Type 2 device. It exposes memory regions to the server through

cxl.mem, and it caches memory from the host through cxl.cache,
as depicted in Figure 3. We provide a simple API to map physical

addresses from the device onto process memory. Once this mapping

is done, applications access these memory ranges “as usual.”

Internally, however, the device offers a powerful indirection

mechanism. It associates a range of addresses with a kernel. A
kernel is a function that provides well-defined semantics for reads and
writes. A kernel that implements memory expansion semantics will

simply redirect reads/writes to a selected memory type. We will

provide such a kernel with the device that can opt between DRAM

or NAND-Flash as backing memory. As Figure 3 shows, the device

can still present itself to the system as an NVMe device and offer a

traditional data path. Nothing prevents a legacy application from

using it that way.

The device can also associate standard or application-specific

kernels to a chosen memory range. We focus on kernels that are

relevant for data-intensive applications that we denote asDatabase

Kernels. These kernels can provide much more than 1:1 address

mapping. They can host functionality that would otherwise be

performed by the database system on the server host. Database

Kernels can manipulate memory directly but can also rely on the

help of local Direct Memory Access (DMA) engines, capable of

efficiently transferring data in, out, and across the storage options,

including fast memory, such as SRAM, in addition to DRAM and

NAND-Flash.

CIDR’24, January 14-17, 2024, Chaminade, USA Sangjin Lee, Alberto Lerner, Philippe Bonnet, and Philippe Cudré-Mauroux

Fast Staging
M

em
ory

Flash
C

hannel

DMA

D
R

AM
M

em
ory

DMA

Memory
Controller

Cache
Controller

Fast Staging
M

em
ory

Flash
C

hannel

D
R

AM
M

em
ory

NVMe
Controller

cxl.cache
messages

cxl.mem
messages

NVMe
messages

SSD
Semantics

Expander
Semantics

DMA

kernel area fixed kernels

…

DMA

……

database
 kernels

 Message Router

requests
to cache

invali-
dations

mem
reads

mem
writes

page
reads

page
writes

Figure 3: ADatabaseKernels supporting device. The device

can be accessed as a conventional SSD or through CXL. In the

latter case, the messages to a given memory address range

will be directed to its assigned kernel. The kernel can choose

which kind of storage type to use and how.

Note that a kernel does not need to map that range onto storage

addresses directly. Instead, it can tie an address range to a virtually
materialized result of a given computation. In other words, if we

imagine that the device is holding a table, a kernel can expose only

some of these table’s rows, as if it had applied a predicate on behalf

of the application. The kernel can also expose data that is not stored

— if it knows how to calculate it from the data that is.Wewill discuss

more examples in Section 5.

Why use a Type 2 device? So far, we have only discussed memory

accesses in what could be perfectly accomplished by a Type 3 device.

However, we propose developing Database Kernels on a Type

2 device. As explained above, this type of device can contribute

memory to the system and also cache data from the system locally.

To do so, it implements a Cache Controller that interacts with the

system’s Directory Controller via cxl.cache. Interestingly, Type
2 devices release control of their memory range to the Directory

Controller (on the host), which forces the device to notify the Di-

rectory Controller if it wishes to cache its own memory. This is

called Host Bias [7].
In our device, a kernel has the option to request shared cached

lines on any portion of the address ranges it exposes. The benefit

of this arrangement is subtle but powerful. If a core on the host

wishes to access a cached memory address in exclusive mode—e.g.,

it wishes to write a new entry in an exposed area—the device can

be notified of this intent through a cache invalidation message.

Figure 4 illustrates this case This early notification of an intent to

write gives the device much more time to prepare for the write than

it would have if it learned about the write as it was requested.

Owning
Cache

Controller

Directory
Controller

Sharing
Cache

Controllers

Device
Controller

ask Exclusive
Invalidade

sharers

ack
Exclusive
granted

put

MemWr

Cmpack

early notice
of upcoming

write

Type 3
Device

Type 2
Device

Core Reques-
ting Exclusive

Owership

store

cxl.cache
traffic

cxl.mem
traffic

Figure 4: A Type 3 device would not learn about a write oper-

ation until the Directory Controller requested it. In contrast,

if the same device could cache memory as well, i.e., if it were

a Type 2 device, it would learn about the early intent to write.

The reason is that, to give a core exclusive access to amemory

address, the Directory Controller must invalidate all accesses

given before. The invalidation is an early signal to the Flash-

based Type 2 device that it should prepare to hear a write

request for that address in the short future, giving it ample

time to prepare.

4 DATABASE KERNEL TYPES

The discussion above about choosing a Type 2 device for its moni-

toring capabilities suggests that there are other CXL mechanisms

than coherence that could be attractive for kernel development. We

divide the kernels in categories according to the CXL features they

use and discuss these categories next.

Classic Kernels. These are kernels that expose a memory address

range backed by device’s DRAM to the database system. There

could be processes inside the device that issue load and store
instructions against these addresses without differentiatingwhether

an address sits on the host system or the device DRAM. Because

these kernels rely on the coherence mechanisms of CXL, we call

them classic CXL kernels.
In a classic kernel, the memory semantics and its backing imple-

mentation are the same as those of traditional memory. Ultimately,

these kernels allow extending the database functionality into the

device, simply by moving wholesale processes into it. We will dis-

cuss more specific examples in the following section, but generally

speaking, any database process one would spin in a multi-socket

machine—where remote access to memory occurs transparently—

could technically be spun inside of the device as well. What defines

these kernels is access to coherent memory.

Database Kernels: Seamless Integration of Database Systems and Fast Storage via CXL CIDR’24, January 14-17, 2024, Chaminade, USA

Advanced Kernels. Database kernels, however, can leverage other

aspects of the CXL protocol than coherence to build more advanced
kernels. We comment on at least three features that enable new

kernel functionality, summarized in Table 1.

The first feature pertains to how CXL is built upon an extremely

low-latency messaging system. Arguably, the most important CXL

component that supports this feature is the Arbiter. The Arbiter
is a hardware component that sits on the lowest part of the CXL

stack and decides which type of message—cxl.io, cxl.mem, or
cxl.cache—will use the PCIe bus next. In practice, the Arbiter will

prioritize cache coherence traffic, even, for instance, during heavy

DMA operations in the PCIe bus. The very presence of the Arbiter

is what differentiates PCIe Gen 5 and cxl.io. Another CXL aspect

that makes it low latency is that its messages are small. They occur

in flits, or 68 bytes in CXL 1.1 (although flits will grow in later CXL

standard iterations) [30]. We have seen above how this combination

of low latency and small messages enable the protocol to monitor

the status of data regions at a cache line granularity and prepare

for upcoming memory modification events before they have been

concluded. Simply put, the coherence traffic can sometimes predict

the memory traffic, and it does so with low latency. There could be

kernels that use this prediction mechanism.

The second feature that can unlock advanced kernel possibilities

is memory independence. The standard does not dictate the type of

memory a device associates with exported address ranges. Servers

supporting CXL on the market at the time of this writing invariably

use DDR5 as the memory standard. However, some CXL-enabled

devices that started appearing can offer DDR4 or even high band-

width memory (HBM). Other CXL-enable devices are built with

FPGAs, which carry some SRAM variations. Moreover, CXL devices

can offer persistence by backing addresses with persistent memory

or with NAND Flash memory. A DBKmay use any type of memory

available in the device or even a combination thereof, for instance,

implementing some sort of memory layering inside the device with

anti-caching semantics [8]. The kernel is free to implement a con-
tract (semantics) that the application relies on when issuing reads

and writes against that kernel memory. This contract may even

vary across different addresses of the same kernel.

The third CXL feature that enables advanced Database Kernels

is perhaps the most powerful. The standard neither dictates the

kind of memory to back up addresses offered by a CXL device, nor

does it mandate that there should be some memory backing the

address! This allows an address to hold the results of a dynamic

computation, performed only when the address is accessed. A typi-

cal usage of this kernel is data compression. Such a kernel would

accept uncompressed writes to a memory region but persist them

in a compressed way. In turn, reading from that region would de-

compress the necessary addresses only. Another interesting kernel

using this feature is to allow a given data structure to be seen as

column-oriented through one memory region but row-oriented

through another region. Most importantly, if either gets updated,

the kernel responsible for these two regions would invalidate the

corresponding cached lines from both regions.

5 KERNEL EXAMPLES

The previous section discussed how certain CXL features, both

centered on coherence and not, can unlock several usefulDatabase

Kernels. In this section, we provide a functional description of a

few of them.

Buffer Manager Extensions. Perhaps the most intuitive kernel

to add to a system is one that expands the amount of memory it

can use. Technically, there is no need for a Database Kernel to

achieve this. Any type 3 device can be attached to the system whose

memory could be promptly used by the system’s Buffer Manager

simply through a larger buffer frame.

Flushing buffers in this arrangement, however, could be less than

efficient. If the device offering the memory has storage capabilities,

the database system may not have the means to transfer data from

the expanded memory into the persistent area easily. It would, most

likely, treat the CXL device as two, the volatile and the persistent

storage device areas. It would stage data from the expandedmemory

and send it to a persistent area—when this data movement could

very well be performed intra-device. The goal of a Buffer Manager

Extension kernel is to enable such optimizations. In other words,

the kernel would implement a Flush operation to move data from

DRAM into Flash.

Note that this kernel may allow for exciting data placement

possibilities. The system may know upfront that certain pages are

being retrieved that may be updated, e.g., as part of a SQL UPDATE
command, while others would not, e.g., in a SQL query. Pages

not already loaded in the system may be allocated accordingly,

with likely writable pages being allocated from the device memory

pool. The benefit of such a data placement scheme is to reduce I/O

bandwidth.

Query Execution Worker. The idea of pushing predicates down

is as old as query optimization. Naturally, this type of optimization

was one of the first to be attempted in-storage [16]. With kernels,

we can support not only this type of scan and filter operation but

also an extensive array of access paths, as the query operations

that interact with the base tables/indexes storage are called. For

instance, a kernel could implement an indexed lookup access. It

would entail an index tree traversal and a base table page read. The

kernel could implement the tree traversal in the device benefiting

from cached data, saving index data transfers between the host and

the device.

As with other typical query workers, the operators this worker

would be executing would communicate with each other via pages

pinned in the Buffer Manager. These pages may or may not reside

inside the device. A traditional query worker on the system pro-

cesses the rest. The coherence feature of CXL allows either type of

worker to access a common set of pages.

A Fast Transaction Logging Kernel. In the two previous kernels,

we took advantage of the memory coherence feature of CXL to

ship some of the database functionality to the device. In this kernel,

we mostly rely on CXL’s fast communication messaging system

in a situation that does not strictly require coherence. Transaction

logging typically entails a sensitive operation in a database system,

as every transaction has to be reflected in a local (and persistent) log

file. Quite often, the speed with which the transaction is persisted

CIDR’24, January 14-17, 2024, Chaminade, USA Sangjin Lee, Alberto Lerner, Philippe Bonnet, and Philippe Cudré-Mauroux

CXL Features Potential Kernel Functionality Kernel Examples

Coherence Allows different processes to access memory Buffer manager extensions, query execution worker, etc.

coherently.

Flit-based messaging Support low-latency communication for Fast transaction logging, etc.

coherence traffic.

Backing-memory freedom Allows mixing memory types within the Data placement for LSM compression, etc.

same memory region.

Non-backed addressing Enables view materialization mechanisms. Compression/decompression, data transposition, coherent

views, etc.

Table 1: CXL features and the kernel functionality they enable.

is the main bottleneck in a database. Transaction logging is an ideal

operation to offload to a DBK, in the sense that it can use a type

of memory with low latency and with a battery-backed option for

persistence. A dedicated database kernel exposing an append-only

abstraction on top of CXL could streamline this set of operations in

variousways. For instance, the kernel can stage log entries on SRAM

and quickly destage them asynchronously to Flash. Comparable

semantics can be obtained using a dedicated storage device (such

as our own X-SSD system [17]), but CXL and kernels bring many

advantages in this context, including the upfront notice of an intent

to write (cf. Section 3).

Data Placement Kernel. In column stores, data is traditionally

stored in two very different memory regions: a write-optimized

store that first receives all updates, and a compressed, read-optimized

store [32]. In HTAP systems, the areas that store different data

representations can be even more disparate [26]. Moreover, in LSM-

tree-based key-value stores, the writing activity in the upper layers

of the tree is more frequent than in the lower ones, and these in-

terfere with compaction work [3]. As discussed in the previous

section, the address ranges exported by a type 3 device may be

backed by more than one memory type. Areas with more intensive

write activity could be initially persisted in SLC Flash memories,

for instance. Areas with more read activity could be moved to MLC,

TLC, or QLC Flash memory, which sacrifice write performance in

the name of more economical reads. Currently, this fine-grained

data placement is not visible to an SSD user, even if it exists in

some devices [34], but with Database Kernels, it can. A kernel

can place different portions of their memory range under distinct

Service Level Agreement, so to speak, just by assigning each portion

to a different type of backing memory.

Coherent Virtual Views. This is perhaps the most powerful type

of Database Kernel. It can equate memory accesses with per-

forming computations. The idea with this kernel is that it exports

a memory address range but does not back it up with memory. It

associates a computation with the region and performs the com-

putation as a side-effect of accessing that region. One example

would be to use this functionality to compress data when writing

and decompressing when reading, both transparently. As the name

implies, we say the kernel implements a view over the data.

The views may explore coherence in a unique way. Suppose

a view exports a column-oriented representation of an area that

is, in fact, stored in a row-oriented format. Each virtual view be

accessible through a different memory range. Updating one of the

memory regions implies updating the other as well. If, however,

either area is being cached anywhere in the system, these cache

lines need to be invalidated. The kernel can control how the areas

of the different regions are associated. When one area gets updated,

besides asking for exclusive access over that data structure, the

kernel asks for the same access over the virtual structure. This

technique was pioneered by CCKit [27] and PLayer [5].

6 PRELIMINARY VIABILITY ANALYSIS

We seek a platform that supports CXL to develop a Database

Kernels storage device. This platform inevitably needs special-

ized hardware because PCIe and CXL protocol messages require

low latency. Moreover, memory management requires specialized

hardware for the same reason. For mostly everything else, there

are alternatives that can use the software in efficient ways. This

combination of hardware and software makes FPGAs a particularly

promising platform. We already have access to a platform that fits

this profile.

One of the most challenging aspects of developing using FPGAs

is predicting the necessary area (how many logic units in the FPGA

fabric) a given design will have. Therefore, our first experiments

were to prototype a hardware design that connects the PCIe/CXL

areas of the card with the memory controller areas. The rationale

behind this design is that it can approximate the data path we wish

the card to support. The data path is certainly one of the components

that will consume the larger area in our design. Table 2 shows the

results of this experiment for a Type 2 and a Type 3 design. As

expected, the Type 2 design uses more area since it implements a

Cache Controller (cf. Figure 2).

Case IP(s)

Logic Unit Counts % of Total

Logic UnitsIdeal Real Total

1

CXL Type 2 179K 213K

251K 27.5%

2 DDRs + User Logic 31K 38K

2

CXL Type 3 141K 167K

204K 22.5%

2 DDRs + User Logic 30K 37K

Table 2: The table shows how many logic units a primary

type 2 or 3 device design uses. Each design includes CXL IP,

two channels of DDR 4, and user logic.

Fortunately, the FPGA is comfortably sized; our data path oc-

cupies only slightly more than 1/4
th
of the available area, leaving

ample space for the other components.

Database Kernels: Seamless Integration of Database Systems and Fast Storage via CXL CIDR’24, January 14-17, 2024, Chaminade, USA

Area, however, is not the only concern. The data path should

provide adequate bandwidth to be effective. In practice, the maxi-

mum bandwidth of a PCIe card is capped at the width of the PCIe

connection. In our case, this is 64GB/s (a Gen5 x16 connection).

This bandwidth can roughly support 2 DDR4 memory controllers,

but it is a somewhat high bandwidth for an FPGA card. For compar-

ison, this bandwidth is equivalent to five 100Gbps network ports.

Therefore, we analyze whether a preliminary design could achieve

such bandwidth. Figure 5 shows the result of this experiment. The

data path in that figure connects (1) the PCIe/CXL controller with

(2) two memory controllers.

Figure 5: Floorplan of the FPGA fabric. The figure shows the

FPGA fabric in the center (large blue rectangle) and the spe-

cialized hard blocks in the periphery. The PCIe/CXL block

is located at the left-center of the FPGA fabric (1). The two

DDR4 channels are located at the bottom-center (2). The cir-

cuit placement in the FPGA connecting these areas is shown

in a green-magenta color range. That range represents the

density of the circuit. In particular, the magenta areas are

close to saturating the resources in that area.

The FPGA floorplan shows that the data path is viable but there

are congested areas within our data path. In essence, this may

mean that the FPGA synthesizer may take longer to compile circuit

definitions, trying to place and route them on the FPGA. We believe

the drawbacks are minor and that we have a suitable platform to

develop a Database Kernels-supporting device.

7 RESEARCH AGENDA

We believe Database Kernels is a foundation for future database

systems incorporating in-storage processing capabilities. The work

presented here is but the start of several fundamental research

directions that need to be explored, including:

Following CXL evolution. Our current proposal is based on CXL

1.1, which is the version that is about to become commercially

available. However, the future versions of the CXL protocol are

already specified. The additional features specified for versions

2.0 and 3.0 can unlock further possibilities for DBK. Of particular

interest is the possibility of integrating a host with remote storage,

which CXL 3.0 and beyond will allow.

Hardware Support for Application Logic. We would like Data-

base Kernels to be an inviting and performant environment for

software development. We can achieve so with a combination of

user and pre-installed functions [11]. Examples of pre-installed

functions are sorting, merging, filtering, transposition, etc. Some

functions could even deal with serialization and deserialization of

traditional file formats. Since these internal functions are stable and

generic, they may be implemented in hardware. The user functions,

in contrast, could be developed in a software environment and a

general-purpose language. To support the latter, the device should

dedicate one or more cores to run application software. We discuss

how to develop in this environment next.

A Database Kernel Development Kit (DSK). Admittedly, the de-

velopment of kernels in our current proposal requires skills that are

only available to SSD and FPGA design specialists. The integration

with Flash is, for now, too low level, and, for performance, some of

it must be implemented via hardware. However, there is no funda-

mental impediment to shifting the development techniques towards

a more software-centric approach. This may require implementing

clearer software interfaces and wrapping hardware aspects of this

integration in something akin to function calls.

Additional Memory Technologies. The current Database Ker-

nels proposal makes SRAM, DRAM, and NAND-Flash memories

available for kernel development. In the future, it should be possible

to incorporate other types of memory such as HBM—and, perhaps

future formats of persistent memory that replace Optane—should

they become more commonly available on development platforms.

Safety and Security Aspects. With many kernels running in a

device, crash safety and security issues may arise. The kernels

should not interfere with one another, and despite being integrated

into the device, they should be isolated in a way that does not

corrupt or otherwise hamper the proper functioning of the device.

Fostering Interoperability.One factor that could significantly im-

prove adoption is if different vendors supportedDatabase Kernels

and competed by offering different cost vs. performance tradeoffs.

Similarly, it would be interesting if a database system boot pro-

cess could check whether the storage over which it is running

provides Database Kernels and adjust accordingly. With such

interoperability features, it should be possible for something akin

to a marketplace of DBK to emerge.

CIDR’24, January 14-17, 2024, Chaminade, USA Sangjin Lee, Alberto Lerner, Philippe Bonnet, and Philippe Cudré-Mauroux

8 RELATEDWORK

To the best of our knowledge, this is the first work that leverages

CXL to provide in-storage database functionality. Storage, however,

has been historically gaining processing capabilities [4, 11, 19].

Leveraging that potential for query processing was described by

Do et al. [10]. More recently, Lerner & Bonnet characterized the

architectural alternatives to do so [18]. There are many examples

of functionalities that were pushed into storage: joins and filters [6,

13, 16], transaction log acceleration [17], LSM compaction [22], and

device profiling [20], to cite a few. These are excellent kernel candi-

dates, and if implemented so, they will benefit from the uniform

and transparent interface that CXL can offer.

Some works started to speculate about how to use CXL memory

expanders to integrate a host’s memory either with storage [14, 28]

or directly with a database system [1]—but never both, as Data-

base Kernels do. Abishek et al. have discussed mechanisms to

maintain cache coherence across virtually materialized views [27].

The mechanism is very powerful, and Database Kernels can take

full advantage of it within a storage device.

9 CONCLUSION

In this paper, we introduced Database Kernels, the first platform

to embed database functionalities deep into storage devices using

coherence technology. The cornerstone of this database-device inte-

gration is the use of CXL, and in particular its caching capabilities.

The device uses coherence traffic tomonitor requests, prepare ahead

of time, and ultimately answer database queries more efficiently.

While realizing the full potential of DBKs will take years, we are

already excited about the new database architectural possibilities

that this new technology opens.

ACKNOWLEDGMENTS

This work has received funding from the Swiss State Secretariat

for Education (SERI) in the context of the SmartEdge EU project

(Grant agreement No. 101092908).

REFERENCES

[1] Minseon Ahn et al. 2022. Enabling CXL Memory Expansion for In-Memory

Database Management Systems. In DaMoN. https://doi.org/10.1145/3533737.

3535090

[2] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno,

Richard Murphy, Ravi Nair, and Steven Swanson. 2014. Near-data processing:

Insights from a micro-46 workshop. IEEE Micro 34, 4 (2014), 36–42.
[3] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chand-

hiramoorthi, and Diego Didona. 2019. SILK: Preventing Latency Spikes in

Log-Structured Merge Key-Value Stores. In USENIX. https://www.usenix.org/

conference/atc19/presentation/balmau

[4] Antonio Barbalace and JaeyoungDo. 2021. Computational Storage:WhereAreWe

Today?. In CIDR. https://www.cidrdb.org/cidr2021/papers/cidr2021_paper29.pdf

[5] Richard Braun, Abishek Ramdas, Michal Friedman, and Gustavo Alonso. 2023.

PLayer: Expanding Coherence Protocol Stack with a Persistence Layer. In DIMES
Workshop. https://doi.org/10.1145/3609308.3625270

[6] Wei Cao et al. 2020. POLARDB Meets Computational Storage: Efficiently Support

Analytical Workloads in {Cloud-Native} Relational Database. In FAST. https:

//www.usenix.org/system/files/fast20-cao_wei.pdf

[7] CXL Consortium. 2023. Compute Express Link Specification. https://www.

computeexpresslink.org/download-the-specification.

[8] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan

Zdonik. 2013. Anti-caching: A new approach to database management system

architecture. 6, 14 (2013), 1942–1953. https://doi.org/10.14778/2556549.2556575

[9] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Animesh

Trivedi. 2022. Understanding Modern Storage APIs: A Systematic Study of libaio,

SPDK, and io_uring. In SYSTOR. https://doi.org/10.1145/3534056.3534945

[10] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park,

and David J. DeWitt. 2013. Query Processing on Smart SSDs: Opportunities and

Challenges. In SIGMOD. https://doi.org/10.1145/2463676.2465295

[11] Niclas Hedam, Morten Tychsen Clausen, Philippe Bonnet, Sangjin Lee, and Ken

Friis Larsen. 2023. Delilah: EBPF-Offload on Computational Storage. In DaMoN.
https://doi.org/10.1145/3592980.3595319

[12] Intel. 2023. Sapphire Rapids Family. https://ark.intel.com/content/www/us/en/

ark/products/codename/126212/products-formerly-sapphire-rapids.html.

[13] Insoon Jo, Duck-Ho Bae, Andre S Yoon, Jeong-Uk Kang, Sangyeun Cho, Daniel DG

Lee, and Jaeheon Jeong. 2016. YourSQL: a high-performance database system

leveraging in-storage computing. In VLDB. https://doi.org/10.14778/2994509.

2994512

[14] Myoungsoo Jung. 2022. Hello Bytes, Bye Blocks: PCIe Storage Meets Compute

Express Link for Memory Expansion (CXL-SSD). In HotStorage. https://doi.org/

10.1145/3538643.3539745

[15] Aarati Kakaraparthy, Jignesh M. Patel, Kwanghyun Park, and Brian P. Kroth.

2019. Optimizing Databases by Learning Hidden Parameters of Solid State Drives.

(2019). https://doi.org/10.14778/3372716.3372724

[16] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won Lee, and

Bongki Moon. 2016. In-storage processing of database scans and joins. In Infor-
mation Sciences. https://doi.org/10.1016/j.ins.2015.07.056

[17] Sangjin Lee, Alberto Lerner, André Ryser, Kibin Park, Chanyoung Jeon, Jinsub

Park, Yong Ho Song, and Philippe Cudré-Mauroux. 2022. X-SSD: A Storage

System with Native Support for Database Logging and Replication. In SIGMOD.
https://doi.org/10.1145/3514221.3526188

[18] Alberto Lerner and Philippe Bonnet. 2021. Not Your Grandpa’s SSD: The Era of Co-

Designed Storage Devices. In SIGMOD. https://doi.org/10.1145/3448016.3457540

[19] Alberto Lerner, Rana Hussein, André Ryser, Sangjin Lee, and Philippe Cudré-

Mauroux. 2020. Networking and Storage: The Next Computing Elements in

Exascale Systems?. In IEEE Data Engineering Bulletin. https://exascale.info/

assets/pdf/lerner20debull.pdf

[20] Alberto Lerner, Jaewook Kwak, Sangjin Lee, Kibin Park, Yong Ho Song, and

Philippe Cudré-Mauroux. 2020. It Takes Two: Instrumenting the Interaction

between In-Memory Databases and Solid-State Drives. In CIDR. https://www.

cidrdb.org/cidr2020/papers/p19-lerner-cidr20.pdf

[21] Huaicheng Li et al. 2023. Pond: CXL-Based Memory Pooling Systems for Cloud

Platforms. In ASPLOS. https://doi.org/10.1145/3575693.3578835

[22] Minje Lim, Jeeyoon Jung, and Dongkun Shin. 2021. LSM-tree Compaction

Acceleration Using In-storage Processing. https://doi.org/10.1109/ICCE-

Asia53811.2021.9641965

[23] HasanAlMaruf, HaoWang, AbhishekDhanotia, JohannesWeiner, Niket Agarwal,

Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,

and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-Enabled

Tiered-Memory. In ASPLOS. https://doi.org/10.1145/3582016.3582063

[24] Micron. 2023. CZ120 memory expansion module. https://www.micron.com/

solutions/server/cxl.

[25] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86 memory model:

x86-TSO. In TPHOLs. https://doi.org/10.1007/978-3-642-03359-9_27

[26] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid transac-

tional/analytical processing: A survey. In SIGMOD. 1771–1775. https://doi.org/

10.1145/3035918.3054784

[27] Abishek Ramdas. 2023. CCKit: FPGA acceleration in symmetric coherent heteroge-
neous platforms. Ph. D. Dissertation. ETH Zurich.

[28] Samsung. 2023. Memory Semantics SSD. https://samsungmsl.com/ms-ssd/.

[29] Samsung. 2023. Samsung Develops Industry’s First CXL DRAM Supporting CXL

2.0. https://semiconductor.samsung.com/news-events/news/samsung-develops-

industrys-first-cxl-dram-supporting-cxl-2-0/.

[30] Debendra Das Sharma, Robert Blankenship, and Daniel S Berger. 2023. An

Introduction to the Compute Express Link (CXL) Interconnect. arXiv preprint
arXiv:2306.11227 (2023).

[31] Daniel Sorin, Mark Hill, and David Wood. 2011. A primer on memory consistency
and cache coherence. Morgan & Claypool Publishers. https://doi.org/10.1007/978-

3-031-01764-3

[32] Michael Stonebraker et al. 2005. C-Store: A Column-oriented DBMS. In VLDB.
https://doi.org/10.5555/1083592.1083658

[33] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, Ren Wang, and

Nam Sung Kim. 2023. Demystifying CXL Memory with Genuine CXL-Ready

Systems and Devices. In arXiv. https://arxiv.org/abs/2303.15375.
[34] Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao, and Tong Zhang. 2016. Reduc-

ing Solid-State Storage Device Write Stress through Opportunistic In-place Delta

Compression. In FAST. https://www.usenix.org/conference/fast16/technical-

sessions/presentation/zhang-xuebin

https://doi.org/10.1145/3533737.3535090
https://doi.org/10.1145/3533737.3535090
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper29.pdf
https://doi.org/10.1145/3609308.3625270
https://www.usenix.org/system/files/fast20-cao_wei.pdf
https://www.usenix.org/system/files/fast20-cao_wei.pdf
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://doi.org/10.14778/2556549.2556575
https://doi.org/10.1145/3534056.3534945
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.1145/3592980.3595319
https://ark.intel.com/content/www/us/en/ark/products/codename/126212/products-formerly-sapphire-rapids.html
https://ark.intel.com/content/www/us/en/ark/products/codename/126212/products-formerly-sapphire-rapids.html
https://doi.org/10.14778/2994509.2994512
https://doi.org/10.14778/2994509.2994512
https://doi.org/10.1145/3538643.3539745
https://doi.org/10.1145/3538643.3539745
https://doi.org/10.14778/3372716.3372724
https://doi.org/10.1016/j.ins.2015.07.056
https://doi.org/10.1145/3514221.3526188
https://doi.org/10.1145/3448016.3457540
https://exascale.info/assets/pdf/lerner20debull.pdf
https://exascale.info/assets/pdf/lerner20debull.pdf
https://www.cidrdb.org/cidr2020/papers/p19-lerner-cidr20.pdf
https://www.cidrdb.org/cidr2020/papers/p19-lerner-cidr20.pdf
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1109/ICCE-Asia53811.2021.9641965
https://doi.org/10.1109/ICCE-Asia53811.2021.9641965
https://doi.org/10.1145/3582016.3582063
https://www.micron.com/solutions/server/cxl
https://www.micron.com/solutions/server/cxl
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3035918.3054784
https://doi.org/10.1145/3035918.3054784
https://samsungmsl.com/ms-ssd/
https://doi.org/10.1007/978-3-031-01764-3
https://doi.org/10.1007/978-3-031-01764-3
https://doi.org/10.5555/1083592.1083658
https://arxiv.org/abs/2303.15375
https://www.usenix.org/conference/fast16/technical-sessions/presentation/zhang-xuebin
https://www.usenix.org/conference/fast16/technical-sessions/presentation/zhang-xuebin

	Abstract
	1 Introduction
	2 Background & Motivation
	3 Device Architecture
	4 Database Kernel Types
	5 Kernel Examples
	6 Preliminary Viability Analysis
	7 Research Agenda
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

