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ABSTRACT
Isolation levels (ILs) play as the correctness contract between ap-
plications and a database management system (DBMS). They are
implemented to ensure the correct database status𝑤.𝑟 .𝑡 . complex
business logic under concurrent transaction processing. However,
verifying the IL implementations of a DBMS has always been a
challenging task due to the 1) inaccessibility of the codebase; 2)
non-deterministic execution orders among concurrent transactions;
3) various IL definitions and implementations and 4) requirement
of highly efficient IL verification. To expose potential IL anomalies
in DBMSs, we propose to design and implement a general IL test
suite Leopard. Leopard can be configured to verify various IL im-
plementations in different DBMSs in a black-box way by analyzing
client-side workload traces. With the help of Leopard, we have suc-
cessfully discovered 24 bugs (14 fixed, 16 confirmed and 8 open
reported) in several commercial DBMSs.

1 INTRODUCTION
Isolation Level (IL) was first introduced with the name “degrees
of consistency” [9]. It serves as the correctness contract between
applications and DBMSs. In general, the higher the IL, the lower
the performance. Commercial DBMSs support different ILs to allow
developers to make a trade off between consistency and perfor-
mance [9]. In our recent work [11], we have found that current
IL verification tools lack generality and have low verification effi-
ciency, causing serious limitations in the application scenarios.

More specifically, the IL verification methods proposed in exist-
ing work can be broadly classified into kernel-oriented [2, 12, 16]
and workload-oriented methods [1, 5, 10, 18]. However, there exist
four challenges that could not be well addressed by these meth-
ods. The first challenge is the inaccessibility of the codebase with
complex code logic inside DBMSs, especially for cloud services pro-
vided by a third party [19]. This makes the kernel-oriented methods
inapplicable since they rely on instrumenting kernel codes to catch
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the internal execution state after writing DBMSs. The second chal-
lenge is the non-deterministic execution order among concurrent
transaction operations, which would make it difficult to capture the
transaction dependencies. In light of this, the workload-oriented
methods propose to impose specific restrictions on the workloads
such that the transaction dependencies can be easily obtained. Ob-
viously, they cannot be adapted to arbitrary workloads. The third
challenge is the existence of various ILs in DBMSs, and even for the
same IL, the implementations in different DBMSs might have subtle
differences. However, none of existing work is general enough to
handle the correctness verification for any type of IL. The last chal-
lenge is the requirement of highly efficient IL verification such that
the IL verification can be performed in an online fashion. Then, the
bugs can be reported and fixed in time. However, previous studies
often detect IL anomalies by performing complex cycle searches
on the dependency graph, which makes them fail to scale to a
high-throughput DBMS.

To address above challenges, we propose Leopard, a novel black-
box IL testing suite to accomplish the target of generality, efficiency
and scalability for IL verification. It provides an implementation
mechanism mirrored verification solution. That is, while issuing a
workload to a DBMS, Leopard also simulates its concurrency con-
trol protocols (CCPs) to see if the DBMS results conform to the
possible schedules allowed by these mechanisms. Firstly, to avoid
touching the codebase of DBMSs or specifying the workload, we
propose to collect time interval workload traces which contain the
execution time interval of each transaction operation from the
client-sides. Then, we further design a novel time interval based
dependency deduction approach which could effectively track de-
pendencies among concurrent transactions. Secondly, to be general
for verifying diverse ILs, we launch a thorough study of various
implementations of ILs and finally abstract four types of implemen-
tation mechanisms, which can be orchestrated to realize all ILs in
our investigated 18 commercial DBMSs. Finally, to keep up with
the DBMS’s throughput, we design a two-level pipeline algorithm
for efficient trace sorting and delivering, and base on which we
design an implementation mechanism mirrored verification to replay
data evolution by simulating the implementation of concurrency
control protocols inside DBMSs. To perform online verification
for distributed DBMSs, we also propose a distributed verification
method by a data-oriented trace sharding such that Leopard can
scale out to the system under test.
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In this demonstration, we will showcase three aspects of Leopard
by providing an online web service [7]. 1) Generality: we adapt
Leopard to different DBMSs with various ILs and different work-
loads. 2) Efficiency: we compare the efficiency of Leopard with the
throughput of DBMS. 3) Scalability: we scale out Leopard by config-
uring parallel verification instances in a distributed way. Leopard
can be adapted to MySQL/PostgreSQL-compatible DBMSs (e.g.,
TiDB and OpenGauss) and has helped us find 24 bugs [13].

2 SYSTEM IMPLEMENTATION
In this section, we introduce the workflow of Leopard and elaborate
its design details. Specifically, Leopard implements its IL verification
with three steps: 1) collecting and sorting client-side workload
traces, 2) deducing the real-time database states (i.e., data evolution)
by replaying traces, and 3) verifying the data evolution by mirroring
the data access procedure inside the DBMS in a distributed way.

2.1 SystemWorkflow
Fig. 1 illustrates the workflow of Leopard. It provides a general
correctness verification for IL implementations in a black-box way.
Firstly, on the workload controller, each test client thread keeps
submitting transaction operations and collecting client-side traces
locally. Then, the trace dispatcher distributes local traces to each indi-
vidual verifier according to the trace sharding policy. Note, multiple
verifier instances can be deployed and run in parallel 𝑤.𝑟 .𝑡 . data-
base throughput. Specifically, each verifier instance takes actions
of sorting traces in the trace manager, constructing data structures
associated with concurrency control protocols and catching data
evolution in the state evolver, and checking IL anomalies in the
anomaly checker. Finally, the dashboard presents the verification
reports.

2.2 Workload Controller
The complex concurrent scheduling of DBMSs makes it rather diffi-
cult to capture dependencies among transactions. On the one hand,
the workload-oriented methods (e.g., Elle [10] and Cobra [5]) rely
on constructing specific workload patterns to facilitate exposing
the dependencies among transactions easier. However, this greatly
limits their application scenarios and test ability. On the other hand,
some kernel-oriented methods [2] instrument the source code of
a DBMS to expose the exact execution timestamps of transaction
operations inside the DBMS on the server side. Then, they construct
dependencies of data evolution based on the collected timestamps.
However, instrumenting source code of a DBMS is laborious and
even impossible (e.g., for a cloud DBMS), and this might also af-
fect the normal transaction executions. To address these issues,
we propose to leverage client-side operation timestamps to infer
transaction dependencies. By logging operation traces in the client
side, we can avoid specifying the application logic or modifying
the DBMS kernel.

More specifically, on the workload controller, each test thread
connected to the DBMS continuously send transaction operations
to the server, and the trace of each operation (including commit
and abort) is logged on the client side. Specifically, the trace of an
operation consists of 1) the timestamp before execution 𝑡𝑠𝑏𝑒𝑓 , i.e.,
sent by the client thread; 2) the timestamp after execution 𝑡𝑠𝑎𝑓 𝑡 ,

i.e., result arriving at the client side; 3) operation type and the data
accessed by the operation. For a read (resp. write) operation, we
log its belonging transaction 𝑡 and its read set 𝑟𝑠 (resp. write set
𝑤𝑠). We formalize the trace of an operation in a given transaction 𝑡
by T = {𝑡𝑠𝑏𝑒𝑓 , 𝑡𝑠𝑎𝑓 𝑡 , 𝑟𝑡 (𝑟𝑠)/𝑤𝑡 (𝑤𝑠)/𝑎𝑡/𝑐𝑡 }. Note, the operation’s
exact execution time inside the DBMS could not be obtained in the
black-box mode, but is covered by the time interval specified by
𝑡𝑠𝑏𝑒 𝑓 and 𝑡𝑠𝑎𝑓 𝑡 . Thus, these traces are called interval-based traces.
Notice that traces from a single thread are ordered by timestamps
since its operations are sent and executed in order in the DBMS.

2.3 Workload Dispatcher
To support online IL verification, the verification process should
catch up with the DBMS’s throughput. This imposes the require-
ment of verifying traces parallelly. Fortunately, as the IL verification
usually deals with conflicting operations which access the same
records, then we can borrow the idea of database sharding to di-
vide traces into partitions based on the accessed data. That is, the
traces from the test clients are firstly partitioned by the workload
dispatcher, and then are dispatched to different verifier instances
to facilitate parallel verifying.

2.4 Verifier
To guarantee ILs, the database community has proposed various
concurrency control protocols (CCPs), which can be classified into
lock-based CCP (e.g., 2PL) and timestamp-based CCP (e.g., MVCC,
OCC and TO)[3]. Different CCPs take different actions on data
and would produce different data evolution footprints. Generally,
there are three critical data structures for implementing these CCPs,
which are lock table, version chain, and dependency graph. The
main idea of verifier is to deduce the data evolution (dependency)
according to the implementations of a CCP in a DBMS. If a different
evolution is deduced compared to that generated by the DBMS,
then an anomaly is detected. Specifically, the verifier first orga-
nizes traces by its trace manager (in §2.4.1), then composes critical
data structures by its state evolver (in §2.4.2), and finally deduces
evolutions and detects anomalies in the anomaly checker (in §2.4.3).

2.4.1 Trace Manager. In each verifier, its trace manager takes the
role of a global trace sorting of its assigned client-side interval-based
local traces, which is crucial for subsequent dependency deduction
on accessed data. Note that, traces from the same client are already
naturally sorted in the order of 𝑡𝑠𝑏𝑒 𝑓 /𝑡𝑠𝑎𝑓 𝑡 . It thenmakes the sorting
as a merge of traces from different clients. For efficient sorting, it
designs a batch-based two-level pipeline to keep delivering ordered
traces for constructing dependencies (see Fig. 1). The first-level is
that trace manager stores the ordered traces from the same thread
into the same local buffer. The second-level is that trace manager
collects traces in each local buffer into global buffer, which launches
a min heap sort according to the 𝑡𝑠𝑏𝑒 𝑓 of traces. Specifically, in each
round, trace manager fetches a batch of traces from local buffers
in a unified manner into the global buffer and updates the min
heap. Next, it obtains the minimum 𝑡𝑠𝑏𝑒 𝑓 across all local buffers
as the watermark, and then any traces in the min heap (i.e., global
buffer) with 𝑡𝑠𝑏𝑒𝑓 lower than the watermark can be delivered to the
state evolver. This is because traces in each local buffer are ordered.
After delivering these traces, trace manager starts the next round of
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Figure 1: The Architecture of Leopard

trace fetching, sorting, watermark updating and trace delivering. To
avoid memory explosion, usually the batch size from local buffers
is equal to the size of delivered traces. Note, when the number of
traces in global buffer exceeds a predefined threshold, only traces
with 𝑡𝑠𝑏𝑒 𝑓 =watermark are fetched from local buffers in the next
round. Since 𝑡𝑠𝑏𝑒 𝑓 in each local buffer is monotonically increasing,
it ensures the watermark keeps increasing, and at least the newly
fetched traces from local buffers can be delivered in the next round
of delivering. This avoids unbounded storage expansion of the
global buffer. The two-level pipeline can guarantee that global buffer
keeps delivering traces in order of 𝑡𝑠𝑏𝑒 𝑓 , which helps construct the
data structures of lock table, version chain and dependency graph
for subsequent anomaly deducing.

2.4.2 State Evolver. The lock table serves the lock based CCPs by
managing the lock acquiring and releasing. A given DBMS might
take different locking strategies under different ILs. Timestamp-
based CCPs rely on pre-commit validation to avoid anomalies by
checking the timestamp-based partial order from the perspective
of either data or transactions. Specifically, by maintaining multiple
physical versions of each record (i.e., changes of the data over time)
in the version chain, MVCC allows read (𝑟 ) operations to access
historical versions, and thus to avoid conflicting with concurrent
write (𝑤 ) operations to boost performance. In addition, transactions
may form a specific dependency pattern based on how and in what
order they access a record. For example, 𝑤𝑤 dependency repre-
sents that a transaction writes a data after another transaction’s
write. Various simple dependencies can form complex dependency
patterns, such as cycles. Different ILs prohibit specific dependency
patterns (i.e., anomalies). Dependency graph is then constructed to
detect various dependency patterns.

The state evolver takes the ordered traces from trace manager to
construct these three data structures (i.e., lock table, version chain
and dependency graph) according to the specific IL implementa-
tion of a DBMS. For example, when verifying Read Committed of
MySQL, an UPDATE will impose exclusive locks on the relevant
rows in lock table, and the commit of the UPDATE will append new
versions to the version chain of relevant data; while for verifying
Serializable of PostgreSQL, if concurrent transaction 𝑇1 reads a
record before 𝑇2 writes to the same record, a read-write (𝑟𝑤 ) de-
pendency from 𝑇1 to 𝑇2 would be added in the dependency graph.
Note that traces in a partition can only construct a subgraph of
the dependency 𝑤.𝑟 .𝑡 . data. To obtain the dependency graph for
all transactions, inter-nodes communication is inevitable based on
the accessed data in transactions. Nevertheless, the communication
cost is low if verifiers are deployed in a single cluster, because the
verification of each cross-node dependency only needs one network
round trip.

Moreover, among these three data structures, lock table has a
static size which can only be updated, while version chain and de-
pendency graph grow along with transaction executions. To avoid
memory explosion, it is crucial to perform garbage collection on
these two structures. Leopard discards garbage versions periodically
which will not be used for verification anymore. Specifically, if the
end timestamp of a trace is earlier than the oldest start timestamp
of active transactions, this version is not visible to any subsequent
transactions and will be garbage collected.

2.4.3 Anomaly Checker. To achieve a general verification tech-
nique for various implementations of ILs, after carefully investi-
gating 18 popular DBMSs, Leopard has summarized and abstracted
four mechanisms, i.e., Consistent Read (CR), Mutual Exclusion (ME),
First Updater Wins (FUW), and Serialization Certifier (SC), which
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can be orchestrated to realize almost all ILs in commercial DBMSs.
Furthermore, to provide online IL anomaly detection ability, Leop-
ard proposes a mechanism-mirrored verification method, which is
to simulate the implementation of CCPs inside a DBMS by combin-
ing these four mechanisms in verifier instances. Since concurrency
control is just one of the components of transaction processing,
reproducing only a concurrency control mechanism from the client
side should be faster than the complete transaction processing in
a DBMS, which facilitates our online verification. The main ideas
of anomaly detection with the client-side interval-based traces are
summarized as followings.
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Figure 2: Verification Examples with the Length of Rectangle
as the Client-side Time Interval

Consistent Read (CR) provides a consistent view of the data-
base at a specific time. As a black-box testing suite, Leopard cannot
obtain the exact execution time of an operation, which determines
the version to read. We leverage the visible snapshot time inter-
val of each operation, i.e., 𝑡𝑠𝑏𝑒 𝑓 and 𝑡𝑠𝑎𝑓 𝑡 , and potential version
evolution of each record to guide the CR verification. Based on the
trace’s interval, we can distinguish the execution order between
operations that do not overlap in time. Note, we have conducted
experiments [17] to show that the non-overlapping rate is more
than 90% even under skewed data with high concurrency. For over-
lapping operations, we identify the candidate version set for the
active transaction 𝑤.𝑟 .𝑡 . the consistency requirement, which is
either statement-level or transaction-level. Any read outside the
candidate set is considered as a CR anomaly. For example in Fig. 2A,
data item 𝑎 has 3 candidate version sets along the timeline accord-
ing to the commit of 𝑇1’s write. Before sending 𝑐𝑜𝑚𝑚𝑖𝑡 of 𝑇1 (at
𝑡𝑠2), the read candidate of 𝑎 can only be the initial value of 𝑎 = 0.
During the 𝑐𝑜𝑚𝑚𝑖𝑡 time interval of 𝑇1, i.e., [𝑡𝑠2, 𝑡𝑠3], both 0 and
1 can be the read candidate, for we cannot know the exact time
point when the write takes effect. So the reads in [𝑡𝑠2, 𝑡𝑠3] of 𝑇2
and 𝑇3 can read either 0 or 1. But after 𝑐𝑜𝑚𝑚𝑖𝑡 of 𝑇1 (at 𝑡𝑠3), 𝑎 = 1
is determined, so the read 𝑅(𝑎) = 0 of 𝑇3 after 𝑡𝑠3 is wrong.

Mutual Exclusion (ME) coordinates concurrent accesses to
shared resources through locking, i.e., to ensure exclusive access to
data. As the exact lock acquiring and releasing time points are not
available in client-side, there might exist multiple possible orders of
lock operations for the given conflict operation traces. We broadly
classify the orders into two cases. Firstly, if each of the possible
orders of lock operations is identified to be incompatible, then there
must exist an ME violation inside the DBMS. Secondly, the valid
order of locking should satisfy that each lock operation does not
acquire a lock until the previous operation releases the lock. So, an
ME violation happens when a transaction acquires an incompatible
lock holding by another transaction. An example is shown in Fig. 2B.

Two concurrent transactions 𝑇1 and 𝑇2 write to 𝑎. From the client
side trace intervals of operations, we can claim that 𝑇1’s minimum
exclusive lock interval on 𝑎 is [𝑡𝑠1, 𝑡𝑠3], and𝑇2’s minimum exclusive
lock interval on 𝑎 is [𝑡𝑠2, 𝑡𝑠4]. The overlapping of the two exclusive
lock intervals indicates an ME violation.

First UpdaterWins (FUW) avoids lost update anomalies among
concurrent transactions. The lost update anomaly occurs when
transaction 𝑇1 reads a data item and then 𝑇2 updates the data item
(possibly based on a previous read), then 𝑇1 (based on its earlier
read value) updates the data item and commits [8]. An example is
shown in Fig. 2C. 𝑇1 reads 𝑎=1, after which 𝑇2 updates 𝑎 = 2 and
commits. However, 𝑇1 updates its read 𝑎=1 to 𝑎=3 and commits,
which causes the write of 𝑇2 lost. If a transaction reads a data item
and later writes it, Leopard will check if there exist concurrent
committed write operations within the time interval from its read
snapshot point to the commit of its write operation. If so, a lost
update anomaly occurs. For example [𝑡𝑠2, 𝑡𝑠3] of 𝑇2 lies in [𝑡𝑠1, 𝑡𝑠4]
of 𝑇1, thus an anomaly is detected.

Serialization Certifier (SC) guarantees that transactions exe-
cuted inside a DBMS are conflict serializable. A general approach
of verifying conflict serializability is to do cycle searching on its
dependency graph. A cycle on the dependency graph indicates
a violation of conflict serializability. However, cycle searching is
costly. We propose to use a certifier-based approach. In this way,
SC checks whether there exists a specific dependency pattern (i.e.,
certifier) on the dependency graph that should be prohibited by
DBMS. For example, the SSI of PostgreSQL takes two consecutive
𝑟𝑤 dependencies as a certifier, which leads to a write skew anomaly,
as shown in Fig. 2D. There are two concurrent transactions 𝑇1 and
𝑇2. 𝑇1 reads a version of 𝑎 before 𝑇2 commits which also writes 𝑎,
i.e., 𝑡𝑠1 < 𝑡𝑠4, and then writes 𝑏. Thus, there exists a 𝑟𝑤 dependency
from 𝑇1 to 𝑇2. And 𝑇2 reads a version of 𝑏 before 𝑇1 commits which
also writes 𝑏, i.e., 𝑡𝑠2 < 𝑡𝑠3, then writes to 𝑎. Thus, there exists a 𝑟𝑤
dependency from 𝑇2 to 𝑇1. The two consecutive 𝑟𝑤 dependencies
indicate a write skew anomaly.

Note that we have sharded traces to different verifiers. Since
CR, ME and FUW verifications only concern data conflicts, they
can be served by each node individually. For SC, one network
round trip inter-node communication is consumed to construct the
dependency graph for active transactions.

2.5 Dashboard
The dashboard showcases the runtime actions of Leopard. It contains
two parts, which are anomaly reports and runtime information. The
report exposes the anomaly details and related traces, which help
to locate and fix the problem. Runtime information contains the
throughputs of online verifiers and the real-time status of inner
data structures. It can be used to monitor the status of Leopard and
help to set a proper configuration for online verification.

3 DEMONSTRATION PROPOSAL
For demonstration, Leopard is deployed as a web service on a
Ubuntu Server with a 16-core AMD EPYC Processor and 32G RAM,
configured with one trace dispatcher and two verifiers (i.e., veri-
fier instances) by default, which can be visited from the website
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https://dbhammer.github.io/leopard/. In this section, we demon-
strate usages and the performance of Leopard in IL verification. In
scenario 1, we provide an online verification to show the perfor-
mance of Leopard in Fig. 3. Though we have detected 24 bugs in
several commercial DBMSs [13], it is not easy or even impossible to
find any IL bug during running the example benchmark workloads
in a short time. Then in scenario 2, to show the effectiveness of
IL anomaly detection, we summarize and provide some example
buggy workload traces from our previous practical experiences in
Fig. 4. These workload traces can trigger the generation of anomaly
reports. Notice that, we have documented all bugs detected by Leop-
ard [13], among which, 16 bugs have been confirmed by developers
through community forums or emails .

3.1 Scenario 1: Online Verification of ILs
Leopard supports verifying various ILs without modifying codes
of DBMSs and imposes no restriction on workloads, i.e., workload
and kernel independent. In Fig. 3, it provides various knobs to vary
the workloads, databases, client sizes, IL and verifier instance sizes,
such that the generality, efficiency and scalability of its verification
ability can be well demonstrated.
Workload Type. We plug OLTP-Bench [6] into Leopard, which
provides two popular OLTP benchmarks, i.e., SmallBank [14] and
TPC-C. They are used to demonstrate that Leopard can launch IL
verification for any arbitrary workload.
Database Type. Two representative databases, i.e., MySQL and
PostgreSQL, are used to run the workload. Currently, Leopard has
been well adapted to MySQL/PostgreSQL-compatible DBMSs. And
it can also be adapted to other DBMSs if necessary.
Isolation Level. The classic ILs are supported by Leopard, e.g., Read
Committed, Repeatable Read and Serializable. Note that DBMSs
may have different implementations even for the same IL, and

Leopard can distinguish these differences and perform verification.
For example, for Repeatable Read, TiDB fetches the snapshot at the
start of a transaction, but PostgreSQL fetches the snapshot at the
first non-transaction-control statement.
Scale Factor, Test Clients, Verifier Instances and Runtime.
Adjusting the scale factor and the number of test clients can control
the degree of data contention and thus affect the overall throughput
of a DBMS. For a high throughput DBMS, a single verifier instance
may not be able to keep up with the database executions. For online
verification, Leopard can be scaled horizontally by increasing veri-
fier instances. Runtime is used to control the runtime of a round of
the demo application scenario.

For generality, we can configure the workload, target DBMS and
IL for various test scenarios with a specified running time. For
efficiency, we can adjust the number of clients and the scale factor
of DBMS to test the performance of Leopard under different DBMS
throughputs. For scalability, we can change the number of verifier
instances to show the scalability of Leopard.

After setting the running parameters on the dashboard of Fig. 3,
users can click the verify button to run both the database and Leop-
ard. As the verification framework runs, the back-end constantly
monitors its working status and the front-end displays the runtime
performance statistics and verification status on the dashboard in
Fig. 3A–Fig. 3F.

Firstly, we plot the throughput of a DBMS and the throughput of
Leopard by summarizing all the throughputs of verifier instances in
real time (in Fig. 3A). Since the version chain and dependency graph
in state evolve are supposed to expand as the running of workload,
we show a real-time scale of these data structures to exhibit the
effectiveness of garbage collection of Leopard (in Fig. 3B). At the
same time, the interface monitors the runtime resource usages of
Leopard, including memory (Fig. 3C) and CPU (Fig. 3D). Moreover,

https://dbhammer.github.io/leopard/
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the verification progress is shown in Fig. 3E, which represents the
running progress of the test scenario. After verification, it presents
the detected anomalies in Fig. 3F. An analysis report is summarized
and linked to bugs, which contains the traces and the details related
to the anomalies as in Fig. 4H.
3.2 Scenario 2: Buggy Workload Trace Analysis
To demonstrate the IL anomaly detection ability, we abstract and
summarize the patterns of IL bugs from our practical experiences,
and construct several example buggy traces𝑤.𝑟 .𝑡 . different patterns
in Fig. 4G, which can be loaded to Leopard to trigger bug reporting.
Meanwhile, it allows users to edit and correct these example buggy
traces, and then to test the response of Leopard to the modifications.
Users can also prepare their own workload traces following our
format guideline [4], and then load them to Leopard for verification.
Finally, the bug summarization and the related details are presented
in the test summarization (as in Fig. 4H) by clicking the question
mark for detected anomalies (as in Fig. 3F.)

4 BUG CASE DEMONSTRATION
In this section, we show a snapshot versioning error recently found
in XDB, which could not be detected by existing tools, e.g., Cobra
and Elle.

1 / ∗ Isolation Level: REPEATABEL READ ∗ /
2 CREATE TABLE t(k INT, v INT);
3 INSERT INTO t VALUES (1, 1); / ∗ T0 ∗ /
4
5 START TRANSACTION; / ∗ S e s s i o n −1 : T1 ∗ /
6 START TRANSACTION; / ∗ S e s s i o n −2 : T2 ∗ /
7 UPDATE t SET v = v + 1 WHERE k = 1; / ∗ S e s s i o n −1 : T1 ∗ /
8 / ∗ R e s u l t : UPDATE 1 ∗ /
9 COMMIT; / ∗ S e s s i o n −1 : T1 ∗ /
10 SELECT * FROM t WHERE k = 1; / ∗ S e s s i o n −2 : T2 ∗ /
11 / ∗ R e s u l t ( 1 row ) : k | v
12 1 | 1 ∗ /
13 COMMIT; / ∗ S e s s i o n −2 : T2 ∗ /

At the beginning,𝑇0 inserts a record (𝑘 = 1, 𝑣 = 1). Subsequently,
transactions 𝑇1 and 𝑇2, belonging to two separate sessions (session
1 and 2), concurrently access this record. According to XDB’s doc-
umentation, when the isolation level is REPEATABLE READ, it
fetches the snapshot by the first non-transaction-control statement.
Therefore, the SELECT statement at line 10 should read the latest
committed version, which is (𝑘 = 1, 𝑣 = 2). However, XDB returns
a stale version (𝑘 = 1, 𝑣 = 1). By leveraging timestamps, Leopard
can infer that session 2 should read the updated data by session
1, which is inconsistent with the data in the read/write sets. Thus,
Leopard can identify this as an error. However, Elle and Cobra rely
only on read/write sets to infer dependencies among operations
and ignore their time orders. In this case, 𝑇0 and 𝑇1 form a 𝑤𝑤
dependency, while𝑇0 and𝑇2 form a𝑤𝑟 dependency. Since no cycles
exist among 𝑇0, 𝑇1 and 𝑇2, Elle and Cobra fail to detect this bug.

5 RELATEDWORK
To mutate queries into new forms by changing operators, accessing
new attributes/tables and varying expressions is a class of work for
detecting query-related bugs. PQS [15] and TQS [20] belong to this

class of work. Due to the complexity of computational logic, it is
tough for a query engine to cover all cases, especially corner cases,
for expressions, joins, aggregations, etc. These tools focus more on
composing variant queries. For example, TQS is the most recent
test framework which targets at detecting logic bugs in multi-table
join processing. The bugs are detected by iterating variant joins
on diverse attributes/tables. These tools care little about parallel
processing/contention or cannot detect transactional bugs.

Transactional bug detection cares more about whether concur-
rent transactions comply with the IL claimed by a DBMS. The main
challenge comes from the construction of test oracle 𝑤.𝑟 .𝑡 . non-
deterministic parallel database accessing (modifying). Elle [10] and
Cobra [5] are the state-of-the-art IL verifiers. Specifically, Cobra
can only expose violations of serializability. Elle is adaptive to more
ILs, but it still cannot support all the popular ILs. Both of them
require to specify workload patterns which can explicitly expose
dependencies among transactions based on data. As a result, they
cannot be adapted to verify any workload. Moreover, they perform
IL verification based on cycle searching on dependency graph, but
the complexity of cycle searching increases superlinearly with the
number of transactions [11]. Due to the lack of an effective garbage
collection strategy, Elle’s dependency graph increases dramatically
with the increase of concurrent transactions, leading to a sharp
increase in memory. Thus, neither Cobra nor Elle can scale out for
online verification. 𝐷𝑇 2[21] proposes a novel differential testing
method for deterministically scheduling concurrent workloads in a
serial fashion to detect transaction implementation flaws as well
as compatibility issues in MySQL-compatible databases. However,
its serial execution mechanism prevents it from verifying diverse
parallel OLTP workloads.

Leopard is then designed to fill the gap between the IL verification
tools and the real-world verification requirements, which presents
good properties of generality, efficiency and scalability.

6 CONCLUSION
Leopard is an isolation level (IL) test suite. It is the first work which
can perform online IL verification for various DBMSs in a black-box
mode. We introduce an online web service to demonstrate the usage
and ability of Leopard in this paper. Leopard is a general IL verifier
that can work well with any workload generator. In addition to
the workloads in benchmarks, Leopard can be also applied to well-
tested in-production databases ( e.g., MySQL, PostgreSQL, TiDB,
OceanBase, and OpenGauss ) by connecting to various private and
public test case libraries provided by different database vendors.
It helps us find 24 bugs in verifying transactions (more details in
[13]), among which 16 are confirmed.
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