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ABSTRACT
We describe and demo MotherDuck: a new service that connects
DuckDB to the cloud. MotherDuck provides the concept of hybrid
query processing: the ability to execute queries partly on the client
and partly in the cloud. We cover the motivation for MotherDuck
and some of its use cases; and outline its system architecture, which
heavily uses the extension mechanisms of DuckDB.

MotherDuck allows existing DuckDB users who use a laptop, like
data scientists, to start using cloud computing without changing
their queries: this can provide better performance as well as scala-
bility to larger datasets. It also provides them the ability to share
DuckDB databases with others through the cloud for collaboration.

Hybrid query processing opens the door to new data-intensive
applications, such as low-latency analytical web apps, withDuckDB-
wasm as the client running inside a browser. It also leads on to
research questions, some of which we describe in the paper.

1 INTRODUCTION
MotherDuck is a new service that offers DuckDB data storage and
serverless query processing in the cloud. DuckDB is an embedded
analytical database system, originally developed at CWI [32]: where
"embedded" means that it runs inside the driver/API library used
by the client process that issues SQL queries. This implies that a
complete DuckDB system runs inside its JDBC driver. Therefore,
all clients using DuckDB have a local database engine, but with
MotherDuck, queries can now also use a cloud DuckDB engine.
Starting to use MotherDuck is as simple as typing .open md; in the
DuckDB SQL shell. DuckDB’s popularity stems from its high per-
formance, as an analytical system; and its ease of use, being tightly
integrated with Python and R data science libraries. MotherDuck
inherits these properties, since its user interface is DuckDB.

Hybrid Query Processing.MotherDuck allows customers to store
DuckDB databases in the cloud and query cloud-hosted Parquet,
CSV, or JSON files, like other cloud databases. However, Mother-
Duck users can simultaneously have local DuckDB databases and
local files and query all of these data sources within one same query.
TheMotherDuck optimizer will plan query operators to be executed
close to where the data is. If all data sources are local, DuckDB will
process the query completely locally, and if all are remote, the query
will be executed in the cloud. If some data is local and some remote,
then part of the query will be executed locally, and part remotely,
using "bridge" operators that upload and download tuple streams
between local and cloud – this we call hybrid query processing.
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Reducing Cloud Footprint.An observation from analyzing traces
of cloud data warehouses [2, 10] is that >95% of databases are <1TB
in size and >95% of queries involve <10GB of data. However, in order
to address very large scale problems, current analytical cloud data
platforms [5, 34, 13] rely on scale-out architectures, where a cloud-
provisioned cluster of multiple nodes processes each single query.
This adds to system complexity, which arguably 95% of the users
and use cases do not need. Further, scale-out is not free performance-
wise, since multi-node task scheduling unavoidably increases end-
to-end query latency and introduces multi-node communication
overhead: queries must shuffle data over the network between
the nodes, adding network and [de]serialization CPU cost (see:
"Scalability, but at what COST?" [27]).

Under the slogan "Big Data is Dead", MotherDuck therefore
advocates a serverless architecture that avoids scale-out, opting for
the simplicity of a single node architecture.1 Here, elasticity for a
single user is provided by varying the amount of cores and RAM
given to a container (scale-up and -down). Workloads with many
users can be scaled by spreading users over more/fewer nodes.

There is a carbon emission argument to be made for the effi-
ciency of a single-node engine approach, that eschews mentioned
multi-node overheads. Additionally, hybrid query processing allows
to use local devices more intensively. Both these features of Moth-
erDuck arguably lead to a reduced need for cloud hardware. While
energy provisioning in cloud data centers is more efficient than in
a laptop, the most recent calculations indicate that the carbon emis-
sions of compute are dominated by hardware manufacturing cost
regardless [15]. This certainly holds for laptops, which have a short
lifespan and consequently their usage-related carbon footprint is
dwarfed by their manufacturing carbon footprint. As such, one can
argue that better use of local hardware that otherwise sits idle can
reduce carbon emissions due to less cloud hardware being needed.

Enabling New Applications. Beyond any carbon argument, pro-
cessing in both client and server opens up new applications, since
the client can process certain queries locally. DuckDB is the only
analytical DBMS that can be compiled to Web Assembly (wasm [8]),
thanks to its policy to avoid taking any dependencies on other
software packages (which are prone to break wasm transpilation).
One can construct web-apps that embed DuckDB-wasm [19] in
HTML, and connect these to MotherDuck in the cloud. When oper-
ating on local data or cached query results (temporary tables), this
can power very low-latency applications, which are impossible in
a cloud architecture due to wide-area network latency. An early
demonstrator is the Mosaic framework for scalable, interactive data
visualizations.2 The web-interface of DuckDB also uses this new
application architecture. MotherDuck can also make certain applica-
tions economically viable, as its architecture can reduce cloud usage
1MotherDuck blog entry: bit.ly/big-data-is-dead
2See uwdata.github.io/mosaic

https://bit.ly/big-data-is-dead
https://uwdata.github.io/mosaic
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and thus cloud cost. It could also make applications more secure:
e.g., privacy-sensitive data could only be decrypted on the client
and postprocessed there [33]. For data minimization (as demanded
by e.g., GDPR), one can envision applications that query a personal
data store [12] with privacy-sensitive data under the control of the
user, and join this with cloud-resident data, under the control of the
company that provides the application (a MotherDuck customer).

Scaling Existing Applications. The data processing scenarios
that made DuckDB popular include data scientists designing and
evaluating ETL or analysis pipelines on a laptop. Such scenarios
can now be enhanced with the ability to schedule the designed
pipelines to run in production in the cloud via MotherDuck, e.g.,
regularly feeding data from/into a data lake. These production
pipelines also benefit from MotherDuck’s ability to scale memory
and CPU resources beyond what a laptop can offer. Data scientists
can also use the MotherDuck SHARE and ATTACH features to share
databases in the cloud and collaborate in a team. Scaling to the cloud
requires only a connection to MotherDuck and no logic changes.

2 BACKGROUND: DUCKDB
DuckDB is a database system originally developed at CWI by
Hannes Mühleisen and Mark Raasveldt. It is now being further de-
veloped by their spin-off company DuckDB Labs (which co-founded
MotherDuck), while its core IP is in an open-source foundation.

State-of-the-Art Architecture. DuckDB uses these techniques3:
• columnar storage that is skippable (using MinMax statistics) [1];
with a variety of lightweight compression schemes [35]4.

• primary keys and foreign keys, backed by the ART index [24].
• storing columns with nested datatypes (lists of structs of list of..)
efficiently in "shredded" sub-columns.

• database transactions (insert, delete, update) optimized for han-
dling changes in bulk, rather than to individual rows.

• multi-version concurrency control optimized for fast scans [30].
• a vectorized query execution engine [4], that supports operating
directly on lightweight-compressed data (RLE, Dict, FSST [3]).

• a LeanStore-inspired buffermanager [23], aiming formain-memory
query processing speeds when data is SSD resident.

• a rich set of relational operators, including holistic window func-
tions [25]5, but also PIVOT and lateral/range/AS-OF joins.6

• hyperloglog powered statistics and cardinality estimation [17].
• a rule-based optimizer using dynamic-programming join order
enumeration, that also works in absence of PK/FK constraints [7].

• decorrelation of all correlated subqueries, using special joins [29].
• relational operator implementations for join, aggregation and
sort [21], that run out-of-core with only gradual performance
degradation as memory gets more tight.

• push-based operator execution7, driven by amorsel-driven pipeline
scheduler for self-balancing multi-core query processing [22].

• parallel execution that can efficiently maintain order from an
order-aware data source into an order-aware sink (e.g., DataFrames).

3See also the CMU spring 2023 DuckDB invited lecture: bit.ly/duckdb-internals-cmu
4DuckDB blog entry: bit.ly/duckdb-blog-compression
5https://bit.ly/duckdb-blog-holistic-aggregates and bit.ly/duckdb-blog-window
6DuckDB blog entry: bit.ly/duckdb-blog-rangejoin
7DSDSD (Dutch Seminar on Data Systems Design) lecture: bit.ly/duckdb-dsdsd-push

DuckDB first became popular among data-engineers and -scientists:
users of R and Python, for whom DuckDB became a powerful tool
to manipulate DataFrames in SQL, and manage data in Parquet files.
In aiming to address a wide audience, DuckDB has emphasized
social media, HackerNews and the DuckDB news blog over articles
in scientific venues, to describe many of its innovations.

User-Friendly Features.While DuckDB has good performance,
this is not its most important focus: the project puts a lot of attention
on reliability and testing8, and broad functionality, e.g.:
• "friendly" SQL language extensions such as GROUP BY ALL, SELECT
* EXCEPT col, omitting SELECT with the SELECT * semantics, and
placing FROM first in a query: FROM .. SELECT ...9

• rich timezone support and SQL macros.10
• reading and writing Parquet files11 + Iceberg support.
• automatically inferring (nested) tables from JSON on read.12
• geographical data processing (PostGEESE13).
• vectorized Python UDFs, and full-text-search.14
• "zero copy" integration with dplyr, numpy, pandas and Arrow15:
one can query these with SQL, and materialize such dataframes
from a DuckDB query result without data copying.

Extension Modules. DuckDB can get new functionality via exten-
sion modules. The system can be extended on a number of dimen-
sions: data types, operators, optimizer rules, and even the parser. If a
query causes a syntax error, DuckDB will try to parse the query us-
ing the alternative parsers supplied by extension modules. Another
extensibility dimension is to allow using new catalogs supplied by
an extension module. An example is the PostgreSQL catalog that
allows to connect to such a database and read its tables; so one can
pose queries over a mix of PostgreSQL and DuckDB tables.16

To use a DuckDB extension, one first needs to install it on the
client’s file system. This is done using the INSTALL path; command
in its SQL. The path can also be a URL, and DuckDB Labs hosts an
S3 bucket, that serves the standard extensions it provides. Function-
alities like GIS and full-text search are typically not bundled in the
downloadable DuckDB binaries, but can be installed in this way.
The next step is then to LOAD the extension, which means that it gets
loaded into DuckDB as a dynamically loadable library, and from
then on the new functionality is available. To prevent malicious
or insecure code from being executed, only signed extensions are
loadable without explicitly overriding security settings.

MotherDuck takes advantage of the DuckDB extension mecha-
nism: connectivity fromDuckDB clients toMotherDuck in the cloud
using hybrid query processing is provided via a signed (trusted)
extension. This extension adds new operators, e.g., bridge operators
for sending tuple streams between cloud and client. It introduces
optimizer rules to do - among others - hybrid query planning. It
also introduces a remote catalog that gives local DuckDB users
access to MotherDuck databases in the cloud.
8DBTest2022 keynote: bit.ly/duckdb-dbtest-keynote
9DuckDB blog entry bit.ly/duckdb-blog-friendly-sql
10DuckDB blog entry: bit.ly/duckdb-blog-time
11DuckDB blog entry: bit.ly/duckdb-blog-parquet
12DuckDB blog entry: bit.ly/duckdb-blog-json
13DuckDB blog entry: bit.ly/duckdb-blog-gis
14DuckDB blog entries: bit.ly/duckdb-blog-udf and bit.ly/duckdb-blog-fulltext
15DuckDB blog entries: bit.ly/duckdb-blog-pandas and bit.ly/duckdb-blog-arrow
16DuckDB blog entry: bit.ly/duckdb-blog-postgres

https://bit.ly/duckdb-internals-cmu
https://bit.ly/duckdb-blog-compression
https://bit.ly/duckdb-blog-window
https://bit.ly/duckdb-blog-rangejoin
https://bit.ly/duckdb-dsdsd-push
https://bit.ly/duckdb-dbtest-keynote
https://bit.ly/duckdb-blog-friendly-sql
https://bit.ly/duckdb-blog-time
https://bit.ly/duckdb-blog-parquet
https://bit.ly/duckdb-blog-json
https://bit.ly/duckdb-blog-gis
https://bit.ly/duckdb-blog-udf
https://bit.ly/duckdb-blog-fulltext
https://bit.ly/duckdb-blog-pandas
https://bit.ly/duckdb-blog-arrow
https://bit.ly/duckdb-blog-postgres
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Figure 1: MotherDuck clients always have a local DuckDB, even in web-apps where DuckDB runs as Web Assembly (wasm)
embedded in a HTML page. The cloud compute layer runs the remote (parts of) queries of each user on a DuckDB in a variable-
sized container called "duckling". The cloud storage layer is separate from compute, and stores DuckDB data in object storage.

3 MOTHERDUCK ARCHITECTURE
3.1 Infrastructure
MotherDuck is a SaaS offering, which means it runs a control plane
with components that are responsible for many administrative - yet
crucial - aspects to manage data. A non-comprehensive list includes
- identity management, catalog metadata (databases names, snap-
shots, ownership, lineage, etc.), network load balancers, certificate
management, observability and alerting. In the following, though,
we detail two core aspects: compute and storage.

Compute.MotherDuck’s compute platform is built on top of short-
lived, on-demand, allocated containers. Each container runs a single
DuckDB instance (which we call a "duckling") that is used to serve
requests for a single user. The containers run in a VM that may have
a local SSD, used for caching by the MotherDuck storage service.
Using containers gives us a simple way to put isolation boundaries
between users while enjoying most benefits of shared-everything
multi-tenant platforms. During their lifetime, we can change the
amount of RAM and CPU resources allocated to a container. These
changes must then also be reflected in DuckDB: it has been made
possible to adjust the size of its buffer manager over time, and its
morsel-driven scheduling allows dynamic changes to the amount
of cores used for query processing.

Being the first embedded analytical database system, an ongoing
direction of innovation in DuckDB is the functionality it offers
to the embedding application to express resource constraints that
DuckDB will abide to: embedding applications typically have lim-
ited resources available for their data analytics, and these resources
can also change over time. We expect this feature area of open-
source DuckDB to further develop in the future, and MotherDuck
can then exploit any such new features in its container resource
management.

MotherDuck shuts down containers completely, when they are
not used. There are multiple challenges for this, one of them be-
ing workload management that accurately predicts the required
resources in the future and performs up- or down-scaling of a

container accordingly. Scaling up down of containers leads also
to technical challenges in terms of conserving state (addressed
e.g. with hibernation) and re-arranging containers over machines
(addressed e.g. with migration).

Storage. Our storage layer is built on on a shared, scale-out, dis-
tributed storage fabric, as offered by cloud providers. This is the
most economical way to achieve the durability expectations that
customers have of cloud infrastructure, and enable rapid failover
of instances. MotherDuck’s storage service provides for client data
isolation, and improves performance by (i) leveraging local SSD
resources for caching and (ii) adapting DuckDB database storage
to better suit cloud storage systems. One notable aspect is that a
service like S3 cannot modify files, so data changes are done by
writing (multiple) new files and sometimes deleting files. Whereas
DuckDB’s native data format stores compressed columnar data in
a single file, the duckling storage extension allows for differential
storage, where changed data is stored independently as a muta-
tion tree. This enables zero-copy duplication, sharing, branching
and time travel. The DuckDB storage extension thus seamlessly
maps byte-ranges of DuckDB’s single-file storage onto multiple
files, which are then further mapped onto storage resources, such
as cloud blob storage and ephemeral SSD instance storage.

DuckDB provides multi-database storage in the sense that a sin-
gle DuckDB can ATTACH to multiple database files at the same time,
in either read-only or read-write mode. In the latter case, the access
must be exclusive, whereas in the read-only case multiple DuckDB
processes could attach to the same database file. MotherDuck ex-
ploits this multi-database concept, both on the duckling as on the
client. On the client, it allows to attach to remote (cloud) databases;
in addition to any local databases that the user may have. On the
cloud side, ducklings are attaching in exclusive mode to a database
owned by that MotherDuck user in read-write mode. However, it
also introduces the SHARE feature in which multiple ducklings may
attach to the same MotherDuck database snapshot in read-only
mode. The concept of a snapshot is powered by the previously
mentioned differential storage: by not taking into account newer
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differential files, a database appears to be frozen in time. As such,
MotherDuck allows multiple users (and thus duckling containers)
to have read-only access to a database, created and modified by an-
other user. MotherDuck further introduces a mechanism in which
the users of a database SHARE can be on the latest snapshot, such
that they get notified and refreshed periodically when the owner
of the database publishes updates. Database SHAREs are identified
by a URI that users can communicate to each other, e.g. by email or
chat, to ease collaboration.

3.2 Hybrid Query Processing
A DuckDB query goes through four phases: parsing, binding (cata-
log lookup and type checking), query optimization, and execution3.
The MotherDuck client extension module (depicted in the blue
area of Figure 1) hooks into all four phases. It enriches the SQL
dialect supported, performs remote binding for (e.g., CSV) files in
the cloud, augments the optimizer to plan hybrid query processing,
and extends execution to run both locally and in the cloud.

Order-aware Bridge Operators. The MotherDuck client exten-
sion introduces new pipelined "bridge" operators that download
and upload tuple streams between client and duckling. These oper-
ators aim to work well in situations where upload and download
bandwidth is asymmetrical and handle the possibly different endian-
ness from the client. They maintain the special ability of DuckDB’s
parallel pipelines to materialize tuples in the sink in the same order
they were stored in the original pipeline source, a feature expected
by dataframe library users. Doing so without expensive sorting is
not supported by other relational engines. It requires keeping track
of batch order and some buffering of batches before the sink.

In hybrid query plans, a certain fragment may produce data, that
is consumed by another query fragment that runs on another ma-
chine (i.e., client and cloud or vice versa). The producer-consumer
nature of the processing comes with a well-known buffering is-
sue: if the producer runs faster than the consumer, the amount of
intermediate data accumulates, leading to inefficiencies or even
resource exhaustion and failures. To prevent that, we introduced
flow-control, that pauses the producing pipeline for while, until the
consumer has consumed enough data, in which case it can resume
the producer. Open-source DuckDB for this purpose enhanced its
query scheduling to make pipelines pausable and resumable. This
feature not only benefits MotherDuck, but will also enhance future
open-source DuckDB features, such as async I/O.

Remote-local Optimizer. The MotherDuck client extension also
adds a new rule to the DuckDB optimizer for planning hybrid
query processing. After DuckDB has optimized the plan, this rule
splits the plan into fragments and designates each fragment to
run either locally or remote, inserting bridge operators in between.
The optimizer starts by collecting constraints – each leaf node is
assigned the locality of the data it accesses. It marks data sources
that generate data (like range() or repeat()) as able to run equally
well on either side. Also, some pipeline segments must run in the
same fragment because they rely on shared state (e.g., in a RECURSIVE
SQL query, two operators repeatedly add and scan data from a
shared hash-table). Honoring such constraints, the optimizer rule
then looks for the plan with smallest estimated data transfer cost.

Virtual Catalog. Since query planning is done locally, we must
make sure that local DuckDB has access to metadata information
about cloud-resident databases. For table schemas and statistics to
be available during the binding and the query optimization phases,
we use DuckDB’s extensible catalog to create and maintain a Moth-
erDuck proxy catalog for all relevant cloud databases. This light-
weight virtual catalog offers the same functionality as the DuckDB
catalogs for planning purposes but does not need to support actual
data operations, as those run in the cloud.

SQL Language Extensions. MotherDuck enriches DuckDB’s SQL
in multiple ways. We changed the binding process of the table
functions to read Parquet, JSON and CSV files, which can be used in
DuckDB’s FROM clause, to support an additional parameter MD_RUN
=REMOTE (or =LOCAL) to specify whether the table scan should execute
on the duckling or the client.17 The MotherDuck client extension
further registers a parser that adds support for new SQL statements.
MotherDuck allows users to CREATE and USE multiple databases.
Typically, MotherDuck users have a local database in their client,
and possibly multiple databases in the cloud. The CREATE SHARE

statement allows to share a cloud database with other MotherDuck
users. It returns a URL that another user can use in an ATTACH <url>

statement. At introduction, only the owner could modify data in
these databases, but this functionality is being expanded, including
offering time-travel to older ATTACH-ed snapshots.

Testing. The DuckDB project has developed a testing suite that
includes a fast-to-run but extensive set of SQL unit tests, supple-
mented with longer running tests that use memory sanitizers, mul-
tiple runs of the same queries with different internal settings (like
optimizers on/off), background testing of code coverage, perfor-
mance and various SQL fuzzers8.

MotherDuck is a distributed system, albeit one that involves only
two nodes: client and duckling. Distributed systems testing adds
challenges in reliability (e.g., network hiccups), determinism and
runtime. For developers to run a suite consistently, it is important
that it completes quickly. DuckDB already had a rich set of tests
which we wanted to enable. The key idea that allowed us to do so
was to link client and duckling in a single process and provide an
artificial network that turns RPCs into local function calls.

3.3 User Interface
MotherDuck comes with a built-in web-based user interface to
perform analysis with zero user setup. Online SQL UIs have grown
beyond simply displaying tabular query results, and now offer
features to facilitate the analytical process, including powerful
result-set post-processing and AI-powered assistance.

Interactive Result Set Exploration. An analytical task is like an
iterative, user driven optimization process to find a suitable SQL
query to answer an analytic question. The user will enter a SQL
query, examine the query results, and then revise the query to get
it closer to answering the original analytic question. The aim of
a productive analytical environment is to make the next iterative
step in this search process fast and cheap to discover.

The MotherDuck Web UI supports this process by providing
the user with a notebook-style user interface [14]. Each cell in our

17By default, the remote-local optimizer runs scans of web URLs in the duckling.
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Figure 2:MotherDuckWebGUI showing exploration ofWHO
air quality data. DuckDB-wasm embedded in web page is
leveraged for very low-latency pivoting and re-aggregation
of the query result, and for showing result-set distributions,
using local in-browser queries that run in a few msec.

SQL notebook provides a split view consisting of a text editor for
entering a SQL query and a results pane, as shown in Figure 2. The
results pane is a full-featured interactive pivot table for exploring
query results, based on the open source Tad viewer.18 This presents
the user with column histograms and allows the user to perform
pivot, filter, aggregation, sort, column-selection, column-ordering
and formatting operations without writing further SQL. It allows
the user to interactively explore a query result, to either validate it
or identify opportunities to revise their SQL query.

In order to provide a good user experience for interactive data
exploration, it is essential that interactive operations on the results
table are extremely fast. In user interfaces, 100 ms is a well un-
derstood upper bound on response time for an operation to feel
instantaneous.19 This presents a challenge when developing a UI
for a cloud-hosted database, since typical round trip times from a
user’s laptop to the cloud are 70-100 ms, eating the entire latency
budget. This has led some cloud SQL UIs to implement interactive
analytic operations for exploring tabular result data in JavaScript.

In the MotherDuck Web UI, in contrast, DuckDB-wasm is run-
ning in the browser (Figure 1 left-bottom); it manages the result
sets of the SQL notebook in an in-memory DuckDB database.

This provides a powerful, SQL-complete, post-processing engine
capable of multi-threading that stores data much more compactly
than JavaScript-based alternatives; and thus can cache and process
relatively large amounts of data efficiently20.

Declarative Caching. The implementation of result caching to
support the interactive results interface in the MotherDuck GUI
depends purely on SQL abstractions and the hybrid query process-
ing model. Conventional database optimization focuses on the time
to evaluate individual queries in isolation, or overall throughput

18https://github.com/antonycourtney/tad
19bit.ly/nielsen-norman-response-times
20DuckDB-wasm benchmarks: shell.duckdb.org/versus

across a large workload of many independent queries. Our perspec-
tive is that we need to consider database performance in the context
of an analytics session and minimize user perceived latency in the
UI, rather than only maximize overall system throughput.

When executing a query, the MotherDuck GUI accumulates the
results in a local results cache:

CREATE TABLE localMemDb.main.cacheTable1 AS
SELECT * FROM ({userQuery})
LIMIT {CLIENT_CACHE_ROW_LIMIT}

This in-memory table is managed by DuckDB-wasm running in
the user’s browser. All subsequent interactive operations on the
pivot table are performed by generating SQL queries against it. This
implementation of caching to support the interactive results table
depends only on MotherDuck’s hybrid query processing model. It
guarantees that queries that depend only on local (temporary) tables
will be executed locally. This caching technique is thus available to
any interactive data application built on MotherDuck.

In the future, we would like to support background streaming
to fill the client cache asynchronously. This would enable us to
reduce latency even further by allowing us to render the first page
of results before all results are available.

A limitation of our current caching strategy is that the LIMIT

{CLIENT_CACHE_ROW_LIMIT} clausemeans wemust resort to a fallback
strategy if the query result size exceeds our internal cache limit to
protect user memory limits. For scrolling through even larger result
sets quickly, we plan to use a two stage cache where full tables
are materialized temporarily on the server, and scrolling triggers a
page fault that pulls a large block of rows, enabling initial random
access over much larger result sets.

AI assistant. Since early 2023, it has become clear that Large Lan-
guage Models (LLMs) have significantly improved the state-of-the-
art in handling natural language questions, as well as in the abil-
ity to automatically write queries from natural language prompts.
From its initial launch, the MotherDuck GUI came with the pos-
sibility to formulate notebook queries in natural language. This
feature is also available in all other DuckDB APIs via the PRAGMA

prompt_query(<question>). In the background, MotherDuck AI
will automatically generate an SQL statement, iteratively fix it if
needed (based on error messages), and execute it against the cur-
rent database. Users can also leverage parts of the functionality to
generate SQL snippets from natural language questions or to fix
a broken query. As the area keeps evolving rapidly, MotherDuck
expects AI assistance functionality to significantly increase its role
going forward, impacting query understanding, query completion,
interactive documentation help and more.

4 DEMO
The Efficiency of Hybrid Query Processing. We will demon-
strate the efficiency of hybrid query processing by running queries
from the Star Schema Benchmark. Our benchmark setup consists
of the fact table (lineorder), stored as Parquet files in S3, with the
dimension tables stored on a laptop in a DuckDB database. We then
run some of the 13 join-filter-groupby queries that make up SSB,
using DuckDBwith or without enablingMotherDuck (i.e. fully local
vs. hybrid query processing). The results in Table 1 were obtained
using an Apple M1 Macbook Air (4 performance and 4 efficiency

https://bit.ly/nielsen-norman-response-times
https://shell.duckdb.org/versus
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Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 GB
6.5 6.6 6.7 6.7 6.7 6.8 6.1 7.0 7.4 6.2 7.6 7.7 10.2 1
91.1 90.8 89.5 96.4 97.4 91.6 85.4 91.4 90.0 106.6 116.6 109.2 93.2 10
944.8 920.5 917.0 999.2 975.8 975.2 940.8 935.9 927.7 935.6 1116.2 1094.8 1087.9 100

fully local DuckDB 0.8.1 on Macbook laptop
1.5 1.3 1.3 1.2 1.2 1.4 1.3 1.6 1.3 1.1 1.5 1.6 1.1 1
10.1 10.7 10.3 9.0 9.2 10.1 8.6 9.0 8.4 10.1 13.8 10.2 9.2 10
117.6 107.9 105.5 101.2 95.3 173.8 111.8 129.7 194.9 89.3 110.7 116.0 106.2 100

hybrid query processing in MotherDuck (laptop+cloud)

Table 1: Query runtimes in seconds on the Star SchemaBench-
mark (SSB) using a MacBook, comparing local DuckDB vs.
hybrid query processing in MotherDuck (with a graviton2
duckling inAWS). The lineorder fact table is stored in Parquet
on S3; the dimension tables are local in DuckDB. Scanning
the Parquet files in the cloud and running the join there is
faster (and cheaper) than transferring the data to the laptop.

Figure 3: MotherDuck EXPLAIN output on SSB Q1.1: a bridge
operator uploads the result of a dimension table-scan (date)
with selection pushdown from the local (L) DuckDB to the
remote duckling (R) - which runs the other operators.

cores) with 16GB RAM, whereas the duckling (running in AWS
us-east) is a 16-core m6gd.4xlarge VM with 16 graviton2 cores and
64GB of RAM; though the duckling container was configured to
use 8 cores and 12GB only. The Hybrid Query Plans (Q1.1 shown in
Figure 3) perform the table-scan (and filter) on the dimension tables
locally, then use a bridge operator to upload the data to duckling,
where it is joined with the fact table and aggregated. The large
differences (∼5x faster on scale-factor 1; ∼10x faster on scales 10 &
100) are partly thanks to the duckling having 2x more cores; but
mostly due to the higher bandwidth to S3. The AWS price of all-local
processing is also higher because of egress cost: on scale-factor 100,
90GB is transferred in total, which costs $8).

MotherDuck GUI.We will open the MotherDuck GUI and demon-
strate the very-low-latency postprocessing on query results it offers,
encompassing pivoting column distributions, sorting and filtering.

In addition we will demonstrate the AI-enhanced features, e.g.,
posing certain queries in English rather than in SQL.

Sharing Databases in the Cloud for Collaboration. We will
work through a scenario where one data scientist completes an

analysis on her MotherDuck database and then decides to share
this data with a co-worker. When receiving a link to the database,
they can use this link gain instant access to this data and receive
updates what the data changes.

5 RESEARCH PERSPECTIVES
MotherDuck’s concept of hybrid query processing differs from
distributed query processing and mobile query processing. Mo-
bile databases [9] typically talk to cloud middleware using API
calls; whereas in MotherDuck client and server are united in one
declarative SQL system. In a distributed database [5] usually many
similar nodes collaborate, typically organized in cloud-based clus-
ter; whereas in MotherDuck there are just two nodes, with typically
different hardware and operating systems, connected with often
asymmetrical wide area network performance. The heterogeneous
and asymmetrical aspects cause new distributed query optimization
challenges. While the current architecture of hybrid query process-
ing is two-node; one could imagine running ducklings in multiple
cloud regions; if user data is spread over cloud regions; and then
optimize for hybrid query processing close to the data. Taking this
further, multi-node hybrid query processing could also span edge-
devices or combine on-premise resources with cloud resources; but
query planning in such settings is hardly explored [31].

These optimization challenges are not only in the speed efficiency
space, but also in the cost space as cloud storage, cloud compute, and
egress cost give a price-tag to data placement and query execution
plans, that can be optimized for [26].

It may not be possible with good query optimization alone to
load-balance client and duckling; but this could be achieved by
elastically changing the duckling resources, as queries are planned.
Dynamic resource allocation for ducklings raises research questions
in scheduling containers of many users and their possible migration.

Hybrid query processing in MotherDuck is related to previous
research in client-server processing. Very early work [18] studied
how to partition the various software layers of a DBMS (storage, I/O,
buffer management, query optimization and processing) between
client and server. Rather than partitioning this functionality, Moth-
erDuck replicates it on both client and server, providing maximum
flexibility where to store, access and process data. The idea to do
this was considered in later research into client-server architectures
as one of the alternatives under the names "hybrid shipping" [16]
and "enhanced client server" [6], respectively. While both works
argued for hybrid query processing as the most flexible and best
performing architecture in their model-based simulations, it was
not implemented in an actual system. It should also be noted that
hybrid query processing provides opportunities investigated in [20]
when it is combined with table caching: local-remote caching de-
cisions can start to interact with local-remote query optimization,
because caching actions change the query optimization space.

MotherDuck does not go here yet. Since optimal automatic data
placement requires advance use of a workload, which often is not
available; and since automatic data placement will affect query
performance in ways that could surprise users, the philosophy of
MotherDuck is to give users SQL tools to allow them to influence
data placement: e.g., by storing data in databases that are either
local- or cloud-based. As mentioned in the declarative caching
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section, we also use SQL syntax to specify placement of query re-
sults, starting simply with temp-tables on client- and server-side.
Designing more advanced caching functionality between client is
therefore another research challenge for MotherDuck. This differs
from earlier client-server caching research [11] as (i) middleware is
not needed in hybrid processing, (ii) queries can mix cached and
base data from both client and duckling and (iii) we aim for declara-
tive SQL-level extensions. In the longer term, MotherDuck caching
could encompass finer-grained methods [28] that e.g. reuse the
intermediate results during plan execution across similar queries.

The software engineering challenges include formal protocol
analysis, as well as semantics-preserving transformations to se-
rialized query plans that enable evolutionary change of database
components. MotherDuck runs DuckDB as-a-service in the cloud,
where fast iteration through frequent releases are common practice.
However, with hybrid query processing, MotherDuck combines
cloud compute resources with a locally installed DuckDB client
that does not upgrade as fast. We partially address this difference
by auto-upgrading the MotherDuck extension module to the latest
duckling version; but many functionality changes could still break
compatibility and present challenges in developing new features.

Large Language Models (LLMs) could help data engineering
tasks by venturing into features like AI-assisted data augmentation,
cleaning, and classification. However, LLMs are resource-intensive
and need to be hosted in the cloud. There is a need for smaller
use-case-specific language models (e.g., for SQL completion, SQL
fixing) that are open-source and possibly even suited for client-side
inference. Given limited storage on the client, one could envision
sharing a small LLM between multiple applications on the client,
possibly with different fine-tunings for different applications. This
would make AI query assistants more responsive while contributing
to carbon footprint reduction and better privacy preservation.

6 CONCLUSION
We introduced and motivated MotherDuck: it connects the popu-
lar, lightweight and user-friendly open-source analytics database
DuckDB to the cloud. It does so in a uniqueway, namely by ensuring
that the client that connects to it always has a local DuckDB run-
ning locally – even for web-apps, by running DuckDB-wasm (Web
Assembly) in the browser. The resulting hybrid query processing
model has many advantages and opens up new research challenges
and application possibilities. MotherDuck, building on DuckDB,
intends to empower users to use more client-side resources, while
simplifying cloud data system architecture by using a scale-up ap-
proach. We truly believe that this can reduce the amount of cloud
hardware needed for analytics applications for those 95% of users
that are now burdened with hard-to-manage scale-out architectures,
that are both clunky and expensive to use.

At the time of writing, MotherDuck is one year since inception
and has just beta-launched; so there is still a lot to be built and to
be decided (for instance, the pricing model). We already see a lot of
potential and use cases, from new ultra-interactive data apps in the
browser, to user-friendly collaborative data engineering, with cost-
effective usage of both local and cloud compute for those activities
where either excel.
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