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ABSTRACT
The first contribution of the paper is a comprehensive critique of
modern SQL, informed by an analysis of real-world SQL queries.
This provides the motivation for our second contribution: the Sim-
ple ANd Expressive Query Language (SaneQL). SaneQL features a
straightforward and consistent syntax, which improves its learn-
ability and ease of implementation. Additionally, it provides extensi-
bility, with the added ability to define new operators that integrate
seamlessly with the existing built-in ones. Unlike most data frame
APIs and NoSQL query languages, SaneQL fully embraces the core
principles behind SQL, especially multiset semantics. We propose
that adopting SaneQL’s approach can ensure the enduring success
of relational database technology, offering the power of SQL’s un-
derlying concepts through a more accessible and flexible language.

1 INTRODUCTION
SQL.Despite celebrating its 50th anniversary in 2024 [4], SQL is still
the predominant query language. Its success is inextricably linked
with the success of the relational model. In comparison with other
languages, it stands out for its declarative nature, multiset semantics,
and three-valued logic. These concepts have stood the test of time
and enable data independence, effective query optimization, and
automatic parallelization.
Problem 1: Irregular Pseudo-English Syntax. Unusually among
widely-used programming languages today, SQL has an English-
inspired syntax. The motivation behind the surface syntax of SQL
stems from the desire to make queries easy to read. SQL’s inventor
Don Chamberlin calls this the “walk up and read” property [2]. It is
true that the meaning of a query like SELECT name FROM customer
WHERE id = 42 can indeed be guessed without any formal training.
However, this is only true for simple queries, and optimizing for
this kind of readability comes at great cost. The irregularity of
modern SQL, which has grown tremendously over the past five
decades, makes it hard to learn, cumbersome to write, difficult to
debug, hard to implement, and leads to impenetrable error messages.
The dominance of SQL may be at risk, as evidenced by the rising
popularity of data frame APIs, such as Python’s Pandas. Such APIs
have, to a significant extent, already replaced SQL in data science.
Problem 2: Lack of Extensibility and Abstraction. The corner-
stone of any powerful programming language is a mechanism for
abstraction – and SQL is lacking severely on this front. SQL offers
views (and their transient variant Common Table Expressions) but
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these merely allow naming and re-using parts of a query. For ex-
ample, it is not possible to pass a relation into a view definition as
argument. This effectively makes SQL a functional programming
language that has functions without parameters. More advanced
features such as passing expressions are obviously not supported
either. For example, imagine implementing a semi join or pivot op-
erator that works for arbitrary input relations and join predicates.
This is simply not possible in SQL. SQL fundamentally violates
the “don’t repeat yourself” principle in software engineering, and
instead relies on sheer repetition.
Contributions. This paper makes two contributions. First, Sec-
tion 2 provides a detailed critique of modern SQL. We do this
through example queries that highlight SQL’s weaknesses, and
through the analysis of real-world SQL queries that show the diffi-
culties SQL learners face. Our critique provides the rationale for the
second contribution, the Simple ANd Expressive Query Language
(SaneQL), which we introduce in Section 3. SaneQL has a simple
and regular syntax, which not only makes it easier to learn and
implement, but also enables extensibility. In SaneQL, it is possible to
define new operators that are indistinguishable from built-in ones.
In contrast to most data frame APIs and NoSQL query languages,
SaneQL fully embraces the core ideas behind SQL, in particular
multiset semantics. We believe that SQL has become successful due
to its powerful underlying concepts rather than its unusual syntax
– and that adopting a new modular surface syntax is the best way
to ensure the enduring success of relational database technology.

2 A CRITIQUE OF MODERN SQL
Query Dataset. In this section, we critique modern SQL through
query examples that illustrate its irregular nature. Additionally,
we provide empirical evidence for the claim that SQL is hard to
learn through a real-world query dataset. We collected 130,998
queries from the https://hyper-db.com website in January 2019. The
website provides a web-based SQL interface and is primarily used by
students learning SQL at the Technical University of Munich (TUM)
and other universities. The final exam for the TUM Introduction to
Databases undergraduate course, which has over 1,000 students,
takes place in February. Thus, the dataset reflects the difficulties
that SQL learners preparing for an exam have, rather than the
difficulties experienced users face. The first striking result is that
out of all queries, 50,683 (38%) result in an error when executed.
The vast majority of these errors are compile time (not runtime)
errors. While some of these are clearly unavoidable (e.g., incomplete
queries), we believe that many cases would be unnecessary with a
simpler, more regular query language.
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Table 1: Error messages of 50,683 invalid SQL queries from
https://hyper-db.com website.

% error message (in PostgreSQL)

39.8 syntax error at ...
16.6 column ... does not exist
9.0 column ... must appear in the GROUP BY clause
7.2 relation ... does not exist
5.7 missing FROM-clause entry for table
4.0 subquery in FROM must have an alias
2.2 division by zero (runtime error)
2.2 column reference ... is ambiguous
1.9 aggregate functions are not allowed in ...
1.5 operator does not exist
1.4 each UNION query must have same number of columns
1.2 function does not exist
0.9 invalid reference to FROM-clause entry for table
0.6 SELECT * with no tables specified is not valid
0.5 aggregate function calls cannot be nested

2.1 Syntax
Unhelpful ErrorMessages. Table 1 shows themost common error
messages as reported by PostgreSQL. Many of the most common
error messages are not very helpful, and usually do not explicitly
say what the conceptual problem is or how to fix it. This is particu-
larly true for syntax errors, which, as Table 1 shows, are by far the
most common error type. As we discuss below, the underlying root
cause is often irregular grammar leading to spurious commas and
misplaced parentheses.
WITH. A construct that is surprisingly difficult to get right is
Common Table Expressions (CTEs). Semantically, Common Table
Expressions without recursion are straightforward: they define one
or more transient views that can then be referenced like any base
table. When teaching SQL, we recommend using the WITH construct
to decompose larger queries into intermediate steps. The correct
syntax is as follows:

WITH r AS (SELECT 1), s AS (SELECT 2) ...

The following variants are illegal (and it’s easy to construct more):

WITH r AS (SELECT 1) s AS (SELECT 2) ...

WITH r AS SELECT 1, s AS SELECT 2 ...

WITH (r AS SELECT 1), (s AS SELECT 2) ...

WITH r AS (SELECT 1), s AS (SELECT 2), ...

WITH r AS (SELECT 1) WITH s AS (SELECT 2) ...

We have encountered many similar errors in our query dataset.
Overall, only 45% of all queries containing WITH are correct. Finally,
as an example of SQL’s limited syntactical orthogonality, observe
that in the context of WITH one has to write WITH name AS value,
while in the SELECT clause one writes SELECT value AS name.
WITH RECURSIVE. SQL also offers recursive common table ex-
pressions, which appear as a minor syntactic variation of non-
recursive CTEs, but, by making the language Turing complete,
are much more powerful. The following example computes the
Fibonacci sequence:

WITH RECURSIVE fib(a,b) AS

(SELECT 0, 1 -- base case

UNION ALL

SELECT b, a+b -- recursive case

FROM fib

WHERE a<100)

SELECT a FROM fib

In most programming languages, recursion is a powerful and gen-
eral construct. SQL’s recursive CTEs, on the other hand, are highly
restricted: the SQL standard only permits referencing the recursive
relation (“fib” in the example) once, which prevents many inter-
esting computational use cases [1]. This limitation implies that
the construct is semantically equivalent to iteration rather than
recursion. Indeed, the best way to understand the semantics of a
WITH RECURSIVE query is through the actual iterative execute
logic of the construct: it first executes the base case, then iteratively
executes the “recursive” case using the prior result as input until it
returns an empty result. We argue that specifying this process as a
recursion often makes formulating complex computational logic
unnecessarily abstruse and hard to understand.
VALUES. Another syntactically difficult SQL construct is the con-
struction of constant inline tables, which uses the following syntax:

SELECT * FROM (VALUES ('x',5), ('y',2)) AS r(a,b)

Note the specific locations of the four pairs of parentheses. The
following three variants result in a syntax error:

SELECT * FROM VALUES ('x',5), ('y',2) AS r(a,b)

SELECT * FROM (VALUES ('x',5), ('y',2) AS r(a,b))

SELECT * FROM (VALUES (('x',5), ('y',2))) AS r(a,b)

Given this unforgiving syntax, we are not surprised that students
find it difficult to write correct VALUES expressions. In our dataset
only 40% of all queries that contain the VALUES construct are correct.
Verbose Base Table Queries. The simplest (and maybe most com-
mon) query is probably SELECT * FROM table. This raises the
question why it is not sufficient to simply write table. A related
question is why one has to write SELECT * FROM r UNION SELECT
* FROM s rather than r UNION s.
Too Many Keywords. The SQL parser relies heavily on reserved
keywords. SQL-92 defined 227 keywords, and over time this number
increased, arriving at 409 with SQL:20231. These 401 keywords
include many common English terms, and represent 18% of all
English word usage2. It is therefore not surprising that, in our
query dataset, a significant fraction of invalid table and attribute
accesses stem from reserved keywords being used as identifiers.
The SQLite documentation comments on this situation as follows:
“The list of keywords is so long that few people can remember them
all. For most SQL code, your safest bet is to never use any English
language word as the name of a user-defined object.”3

1https://www.postgresql.org/docs/current/sql-keywords-appendix.html
2This was computed using English word frequency data from https://wortschatz.uni-
leipzig.de/en/download/English.
3https://www.sqlite.org/lang_keywords.html
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2.2 Joins
Implicit Cross Products. Some may argue that SQL’s syntactical
issues are merely annoyances, so let us next turn our attention to
more fundamental issues. The relational model favors the use of
normalized tables. As a consequence, many SQL queries contain
joins, which makes a good syntax for joins important for any re-
lational language. The oldest [4] and most common construct for
inner joins is relying on implicit cross products:

SELECT r_regionkey, r_name

FROM region, nation

WHERE r_regionkey = n_regionkey

This syntax is concise andmathematically elegant, but it has a major
downside: in complex queries it is easy to forget a join predicate.
This will introduce an unintentional cross product, which can have
disastrous consequences including system overload. Such a bug is
particularly easy to miss when the query contains an aggregate.
For example, the following query will take a long time and then
produce a subtly wrong result:

SELECT o_orderpriority, avg(l_quantity)

FROM nation, customer, orders, lineitem

WHERE n_nationkey = c_nationkey

AND o_orderkey = l_orderkey

AND n_name = 'GERMANY'

GROUP BY o_orderpriority

Given that in practice intentional cross products are rare, syntac-
tically representing such a dangerous operator through a comma
may not be the most ergonomic choice. This choice is even more
striking given the fact that SQL is generally very verbose – with
cross products being a dangerous exception.
Explicit Join Trees. SQL also offers an explicit syntax for joins in
the form of FROM r JOIN s on r.a=s.b. While for inner joins,
this is merely syntactic sugar, the explicit syntax is the only way
to express outer joins. The conceptual reason for this is that the
semantics of outer joins depends on the syntactically specified join
order. The following two expressions, for example, may produce
different results:

FROM r LEFT JOIN s ON r.a=s.b LEFT JOIN t ON s.c=t.d

FROM r LEFT JOIN s LEFT JOIN t ON s.c=t.d ON r.a=s.b

The reason for potentially different results is that the location of
the ON clause determines the ordering of the two joins: the for-
mer query represents the order (𝑟 𝑠) 𝑡 , while the latter means
𝑟 (𝑠 𝑡). SQL’s syntax makes this semantic distinction hard to see.

2.3 Aggregation
Redundant Aggregation Attributes.Another common operation
is grouping and aggregation:

SELECT r_regionkey, r_name, count(*)

FROM region, nation

WHERE r_regionkey = n_regionkey

GROUP BY r_regionkey, r_name

Note that the grouped attributes appear twice: once in the SELECT
and once in the GROUP BY clause. This behavior is also surprising

to SQL learners, with 9% of all queries failing with a “column must
appear in the GROUP BY clause” error.
HAVING. Another fairly common error, which occurs in 1.9% of
all erroneous queries, is to filter an aggregate function in the WHERE
clause. Although this would be possible without a special syntax
using a subquery and WHERE, SQL offers the HAVING clause:

SELECT r_regionkey, r_name, count(*) c

FROM region, nation

WHERE r_regionkey = n_regionkey

GROUP BY r_regionkey, r_name

HAVING count(*) > 4

Thus, even though SQL promises to be declarative, there are im-
plicit ordering dependencies between the different syntactic clauses.
More on this observation later.
WITHIN GROUP. Ordered-set aggregate functions, which require
specifying a sort order, rely on the following baroque syntax:

SELECT o_custkey, percentile_cont(0.5)

WITHIN GROUP (ORDER BY o_totalprice)

FROM orders

GROUP BY o_custkey

We do not see any good reason why the WITHIN GROUP qualifier is
required for ordered-set aggregates. Since all aggregate functions
are computed “within their group”, why is it necessary to announce
this so prominently for some of them? The mere fact that they
require sorting does not change its semantics, and sorting is a
common implementation technique for normal aggregates as well.
The only explanation is historical contingency and the need to
avoid parsing issues caused by an English-like syntax.

2.4 Window Functions
OVER. A window function computes a new attribute based on
other tuples of the input relation, which is useful for time series
analysis, ranking, top-k, percentiles, moving averages, and cumula-
tive sums [11]. SQL relies on the following syntax:

SELECT o_custkey, rank() OVER (ORDER BY o_totalprice)

FROM orders

Again we are confronted with a new keyword (OVER). Even tak-
ing “walk up and read” at face value, one may wonder what over
indicates in the context of computing a rank.
Filtering. In SQL, window functions are computed quite late (after
HAVING but before ORDER BY). A consequence of this is that it is
not possible to access window functions in the WHERE clause. Thus,
a common operation such as filtering based on a rank requires a
subquery and becomes quite cumbersome:

SELECT o_custkey, rk

FROM (SELECT o_custkey,

rank() OVER (ORDER BY o_totalprice) rk

FROM orders)

WHERE rk < 4

Notably, SQL provides the GROUP BY clause with its own filtering
mechanism via the HAVING clause, yet window functions lack a



Figure 1: Illustration of SQL syntax clauses and their seman-
tical evaluation order.

similar feature. This asymmetry seems arbitrary as there appears
to be no conceptual justification for this inconsistency.
Operator Ordering. Another consequence of the fact that window
functions are executed after aggregation is that while it is possible
to access aggregates in window functions (e.g., rank() OVER(ORDER
BY count(*))), applying an aggregate on a window function again
requires a subquery:

SELECT o_custkey, max(rk)

FROM (SELECT o_custkey,

rank() OVER (ORDER BY o_totalprice) rk

FROM orders)

GROUP BY o_custkey

The examples illustrate that the execution order of window func-
tions relative to the other operators is quite arbitrary and not visible
in the query itself. One simply has to memorize the fact that they
come after aggregation, and then introduce subqueries as needed.
Thus, SQL is not as declarative as it appears. In fact, it relies on
implicit ordering rules that have to be memorized to understand
the semantics of non-trivial queries.

2.5 Syntactic Order Is Not Semantic Order
As we already saw in several examples, the order of SQL’s syntactic
clauses does not correspond to their semantical evaluation order.
Consider the query shown on the left-hand side of Figure 1. To write
this query correctly, one has to remember the syntax order of each
clause (1. SELECT, 2. FROM, ...). However, this is not enough: to obtain
the desired query semantics, one also has to know the semantical
execution order of each clause. As the arrows in the figure illustrate,
the syntax order prescribed by SQL has little relationship to the
semantical execution order. The SELECT clause may be the most
egregious example: its components can be executed at very different
points in time. A further complication is that, as we discussed earlier,
sometimes this order does not coincide with one’s intention and one
is forced to introduce subqueries to explicitly impose a semantical
order. Thus, although SQL is often called a declarative language, it
relies on subtle semantical ordering constraints that are not visible
in its syntactic structure.

2.6 Lack of Portability
SQL has been called an “intergalactic standard” and its weaknesses
might be forgivable if it would at least ensure portability across

different systems – alas, this is not the reality. Although SQL is an of-
ficial ISO standard, in practice, it is very hard to write portable SQL
queries. There are several reasons for this: Even though the SQL
standard is voluminous, it leaves the semantics of many basic con-
structs undefined. One example is static type inference: Assuming
attribute a is an integer, what is the result type of a/2? Furthermore,
many systems choose to deviate from the standard. For example, 5
out of 14 tested database systems do not support the standard infix
string concatenation operator ||4. Finally, all widely-used systems
implement non-portable expression libraries and language exten-
sions, which further fragments the language. Thus, SQL is not a
single, well-defined language, but a set of mutually-intelligible, but
incompatible dialects.

2.7 Lessons
Irregular Syntax Causes Big Problems. We have demonstrated
that using English-inspired syntax leads to a complex and arbi-
trary grammar, making the language difficult to learn and often
resulting in impenetrable error messages. Such a syntax also makes
the language hard to extend, as every new feature requires new
syntax. As the SQL standard has grown through the decades it
accumulated more and more complexity. The fundamental lesson
from this is that languages have to be designed with extensibility
and abstraction mechanisms in mind.
SemanticOperatorOrdering ShouldBeExplicit.Wealso demon-
strated that in order to compose accurate SQL queries, it is necessary
to comprehend the implicit ordering semantics of each construct.
We therefore argue that it would be better for query languages to
make the semantical and syntactical order identical. Therefore, we
believe that (extended) relational algebra with its explicit opera-
tor ordering is a good foundation for a modern query language.
Note that to teach SQL one generally first teaches relational algebra
anyway, as this allows explaining each operator individually. Also
note that this does not mean that the explicitly specified order also
corresponds to the execution order (as is done by many data frame
APIs). After all, query optimizers work at the relational algebra
level anyway.

3 SANEQL: TOWARDS SIMPLE AND
EXPRESSIVE QUERIES

Motivation. To address the shortcomings of SQL we propose a new
query language, called the Simple ANd Expressive Query Language
(SaneQL). Its benefits are two-fold: First, it provides a nicer andmore
systematic way to expressive queries, which resembles the well
known data frame APIs. But while this is clearly an improvement
over the syntax oddities of SQL, this alone may not be sufficient to
justify a new query language. The second, and perhaps even more
important aspect of SaneQL is modularity. SaneQL allows reusing
logic across queries, which is not traditionally done in SQL besides
the very limited capability offered by views. In the following, we
first look at the basic functionality, which can be seen as a nicer
SQL, and then explain how meta-programming works in SaneQL,
which goes beyond what can be expressed in SQL alone.

4https://github.com/sqlstandardsproject/sqlacidtest
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filter(r table, condition expression)
join(left table, right table, on expression,

type symbol := inner)
as(r table, name symbol)
map(r table, expressions list expression)
project(r table, expressions list expression)
projectout(r table, remove list symbol)
group(r table, by list expression, aggs list expression,

type symbol := group, sets list list symbol := {})
order(r table, by list expression)
union(left table, right table)
unionall(left table, right table)
intersect(left table, right table)
except(left table, right table)
distinct(r table)
window(r table, expressions list expression,

partitionby list expression := {},
orderby list expression := {},
framebegin expression := unbounded(),
frameend expression := currentrow(),
frametype symbol := values)

iterate(base table, recursion expression,
increment symbol := iterate)

Figure 2: Relational operators

3.1 Basics
Foundation: Relational Algebra. Conceptually, SaneQL is based
on relational algebra. Similar to the explicit join syntax in SQL,
the user can describe queries by combining relational operators,
operating on tables and scalar values. And just like with regular
SQL, the initial algebra expression is then transformed by the query
optimizer into a better execution plan. For expressiveness, SaneQL
introduces three new categories of values that do not exist in SQL
namely expressions, symbols, and lists of expressions and symbols.
Wewill come back to the exact definition of these later when talking
about modularity, but as first approximation an expression is an
unevaluated term such as a join condition, and a symbol is name of
a column, relation, or operator.
Pipelining Through UFCS. Syntactically, SaneQL expresses ev-
erything as nested function calls with (optionally) named param-
eters. Similar to the programming languages D and Nim, SaneQL
supports Uniform Function Call Syntax (UFCS), which means that
we can use a dot to pass a value as first argument of the next
call. Thus, a.join(b,...).groupby(...) is a different, more convenient
way to write groupby(join(a,b,...),...). The dot notation is usually
preferable as it preserves locality in the query text, which is very
convenient when formulating queries. Similar to chaining of Unix
commands though pipes, in SaneQL queries are usually formulated
by appending operators step-by-step at the end of the query.
Syntax: Calls, Keywords, and Lists. Consider the following ex-
ample computing the revenue for every customer from Germany:
nation.filter(n_name='GERMANY')
.join(customer, c_nation=n_nationkey)
.join(orders, o_custkey=c_custokey, type := leftouter)
.group({o_custkey}, {revenue := sum(o_totalprice)})

The example demonstrates several features. First, relational op-
erations are performed by invoking functions on tables. A list of
functions defined on tables is shown in Figure 2. Note that these
built-in functions are in no way special, and we can define new func-
tions that work just the same in SaneQL, as we will demonstrate
below. Second, named parameters help to keep complex invoca-
tions readable and the function signature self-documenting, for
example the join type is specified as left outer join here. And third,
curly braces are used to denote lists: in the example both for the
grouping expressions and for the aggregate functions. Inside the
curly braces we can use the named-value-syntax to assign names
to newly computed columns, here to revenue. The result of that
query is a table with two columns o_custkey and revenue.
Scoping.When accessing a table, the system implicitly puts a tuple
variable with the same name into the scope, which we can use
to disambiguate column names. If a tuple is referenced multiple
times as(...) can be used to rename an intermediate result. We
demonstrate both concepts in the following query:
y1.join(y2, y1.x=y2.x).join(y2.as(t3), y2.y=t3.y)

Inline Tables. Constant tables are constructed with a table call:
r.join(table({{y:=1, color:='red'}, {2, 'blue'}}), x=y)

Let Construct. To simplify query formulation one can name in-
termediate results with the let construct. This corresponds to a
WITH statement is SQL, but supports both scalars and tables. Just
like WITH, a let is query-local. We can make it persistent by using
define instead, which corresponds to CREATE VIEW. let is very
convenient for structuring a query, as shown below:
let year := 2023,
let rev_in_year := orders.filter(o_year=year)

.group({o_custkey}, {total:=sum(o_totalprice)}),
customer.join(rev_in_year, type:=leftouter)

3.2 Modularity and Extensibility
Scalar Arguments. The basic examples we have seen so far could
all be expressed in SQL.What makes SaneQLmuch more expressive
is the ability to parameterize queries, which is the basis for modular
query formulation. For example, we could have formulated the last
example with a scalar parameter:
let rev_in_year(year) := orders.filter(o_year=year)

.group({o_custkey}, {total:=sum(o_totalprice)}),
customer.join(rev_in_year(2023), type:=leftouter)

Expression Arguments and Correlated Subqueries. Even more
useful than scalar parameters are table parameters, as they allow
us to formulate queries that work in very different scenarios. For
example, we could implement a generic avg_revenue function
and use it to compare the revenues across very different kinds of
customers:
let avg_revenue(p expression) := customer.filter(p)

.join(orders, o_custkey=c_custkey)

.group({o_custkey},{total:=sum(o_totalprice)})

.aggregate(avg(total)),
let avg_building := avg_revenue(c_mktsegment='BUILDING'),
let avg_regular := avg_revenue(c_comment.like('%reg%'))

Expression arguments can also be used to express correlated sub-
queries, as the following translation of TPC-H query 2 illustrates:



let min_cost_for_part(p_partkey) :=
partsupp.filter(ps_partkey=p_partkey)
.join(supplier, s_suppkey=ps_suppkey)
.join(nation, s_nationkey=n_nationkey)
.join(region.filter(r_name='EUROPE'),

n_regionkey=r_regionkey)
.aggregate(min(ps_supplycost)),

part
.filter(p_size = 15 && p_type.like('%BRASS'))
.join(partsupp, p_partkey = ps_partkey)
.join(supplier, s_suppkey = ps_suppkey)
.join(nation, s_nationkey = n_nationkey)
.join(region.filter(r_name='EUROPE'),

n_regionkey=r_regionkey)
.filter(ps_supplycost=min_cost_for_part(p_partkey)) ...

Evaluation Rules. SaneQL distinguishes between a scalar param-
eter (the default), a table parameter (indicated by table) and an
expression parameter (indicated by expression): Scalar and table
parameters are evaluated in the scope of the caller, and the result is
then passed to the called function, while expression parameters are
passed unevaluated and are then evaluated in the scope of the called
function when the expression is evaluated. Expression arguments
are similar to lambda functions from other programming languages,
except that they can intentionally access the full scope when they
are invoked.
Semi Join Example. This mechanism allows for expressive queries.
Let’s pretend that SaneQL did not offer semi-joins and we want
to implement them ourselves. In reality it does offer semi-joins,
by setting type:=leftsemi when calling join, but for illustrative
reasons we want to do that manually and we want to do this by
using a regular join and then removing duplicates. Note that the
preserved table contains duplicates, which we have to preserve, and
we do not know anything about the join condition. Nevertheless,
we can formulate a generic semi-join query as follows:

define leftsemi(preserve table, probe table, p expression)
let x := gensym(),

preserve
.window({x := row_number()})
.join(probe, p)
.project({probe, x})
.distinct()
.projectout({x})

gensym creates a unique symbol x, which can be used to safely
add a column to an intermediate result. This mechanism is similar
to macros in Common Lisp and avoids potential name conflicts
that could arise when simply adding a column with a fixed name.
Then, it stores a unique integer in the column x, which makes the
input duplicate free, performs the join with the probed table, re-
moves duplicate join results, and finally removes the column x from
the result. While a native semi-join is clearly more efficient, this
demonstrates the expressiveness of the language, as after defining
this function once, it works for arbitrary tables and arbitrary join
conditions. Due to the UCS, this function can be used like a built-in
table operation. Thus, when our leftsemi function is in scope, the
following will just work: rel1.leftsemi(rel2, x=y).

Summary. These mechanisms allow us to formulate queries us-
ing reusable components, where frequently occurring constructs
are implemented once and then used with different parameters
instead of formulating everything over and over again as typically
done in SQL. This is a huge improvement in usability and finally
brings query languages closer to what we are used to in regular
programming languages.

3.3 Implementation
Wedesigned SaneQL to be a native query language. Due to its simple
syntactic structure and straightforward mapping to relational alge-
bra, it is significantly easier to implement than a SQL frontend. Our
prototype implementation, which is meant for illustrative purposes,
translates SaneQL to SQL. The source code of the translator and 22
TPC-H queries is available at https://github.com/neumannt/saneql.

4 RELATEDWORK
HowWe Got Here. Codd proposed not just the relational model
itself [5], but also a declarative query language based on first order
predicate calculus called ALPHA [6]. In ALPHA, queries are spec-
ified through explicit tuple variables that are connected through
predicates and universal or existential quantifiers. The query lan-
guage of Ingres, QUEL [14], is based on ALPHA, but avoids the use
of quantifiers while providing more general aggregation capabili-
ties. The roots of SQL are the Structured English QUEry Language
(SEQUEL), proposed by Chamberlin and Boyce in 1974 [4]. SEQUEL
can be thought of as providing a more friendly, non-mathematical
syntax for predicate calculus through the SELECT-FROM-WHERE-
GROUP BY clauses. It also includes support for subqueries for ex-
pressing universal or existential quantifiers. The original SEQUEL
proposal is conceptually elegant and none of the issues identified in
Section 2 apply – but the functionality of the language is quite lim-
ited. SEQUEL 2 [3] therefore added support for HAVING, UNIQUE
(now called DISTINCT), ORDER BY, and NULL (but not yet outer
joins). The SQL-86 and SQL-89 standards are quite close to SE-
QUEL 2, and the next major change was the influential SQL-92
standard which became the least common denominator supported
by virtually all relational database systems. It adds support for
outer joins and allows subqueries in almost every part of the query.
The SQL:1999 [9] and SQL:2003 [10] standards then incorporated
common table expressions, window functions, and ordered-set ag-
gregate functions – resulting in what we call modern SQL. Tracing
this language evolution over five decades, the addition of each in-
dividual feature seems both rational and beneficial. Yet, since the
initial language design was not designed with extensibility in mind,
each new feature demanded the creation of new syntax. The result
is a hard-to-learn language of unnecessary complexity.
SQL Critiques. SQL has been criticized for almost as long as it
exists. The criticism can be categorized into two classes: lack of
orthogonality and deviations from the relational model. Date’s
1984 critique [8] focuses on the former. Some of the major points
he raised, such supporting subqueries in the FROM clause, have
been addressed in later SQL versions. Codd [7], on the other hand,
criticizes SQL for its use of multiset (rather than set) semantics,
its reliance on subqueries, and the lack of support for four-valued
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logic. We believe that SQL’s semantics has stood the test of time,
and advocate for a more orthogonal and modular surface syntax.
NewQuery Languages.There have beenmany attempts at a better
query language. Popular ones include Microsoft’s Language Inte-
grated Query (LINQ)5 and Kusto Query Language (KQL)6 and data
frameAPIs such as Python’s Pandas7, R’s dplyr8, and Rust’s/Python’s
Polars9. These approaches have in common that they are tightly
integrated into the host programming language rather than the
DBMS. Data frame APIs appear similar to relational algebra, but
their semantics (e.g., ordered and deterministic results, named rows,
eager operator evaluation) make automatic query optimization and
parallelization challenging, leading to suboptimal query perfor-
mance [12]. This is a major challenge for a project like Modin [13],
which strives to achieve high performance in a backwards-compatible
way. We argue that database systems should implement an algebra-
based language that adopts the underlying concepts of SQL but
provide an orthogonal and simple language interface. SaneQL is
our attempt at such a language, bringing innovations of data frame
APIs and in particular dplyr’s pipelining construct to database
query languages. Through its define construct, SaneQL also of-
fers the capability to implement higher-order abstractions within
the language itself. This distinguishes SaneQL from languages like
Pipelined Relational Query Language (PRQL)10, which otherwise
share many of the same ideas.

5 SUMMARY AND FUTUREWORK
The Problems of SQL.Despite being the dominant query language
for half a century, SQL has major weaknesses. For beginners, it is
not only hard to learn and difficult to debug due to impenetrable
error messages, but its irregular syntax also makes common con-
venience features such as auto-completion and built-in interactive
documentation very challenging. For expert users, SQL’s verbosity
and lack of abstraction capabilities slow down ad hoc interactive
data analytics. Additionally, the fact that the standard does not
specify important semantical issues such as implicit type casting
rules makes porting queries across database systems a gamble. Fi-
nally, for developers of database systems, the complexity of the
language makes it a major undertaking to implement a SQL fron-
tend. This indirectly makes developing new systems much more
difficult than necessary and therefore slows down progress in the
data management field.
SaneQL. The root cause of most of the problems enumerated above
is SQL’s irregular and unusual pseudo-English syntax. We argue
that a simple regular syntax together with an explicit ordering
of relational operators is a better foundation for a modern query
language. We therefore propose the SaneQL language, which is easy
to learn and implement. It relies on the same underlying semantics
as SQL, which makes SaneQL easy to offer it as alternative query
language to existing systems. The language is also extendible, i.e.,
one can define new operators that are indistinguishable from built-
in ones.

5https://learn.microsoft.com/en-us/dotnet/csharp/linq/
6https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/
7https://pandas.pydata.org/docs/user_guide/index.html
8https://dplyr.tidyverse.org/
9https://www.pola.rs/
10https://github.com/PRQL/prql

Future Work. While we designed SaneQL as a user-facing lan-
guage, it can also be useful in other cases, which we plan to investi-
gate in the future. SaneQL’s syntactical elements closely resemble
those of many modern scripting languages, allowing for its direct
embedding into a host language A version of the language with
additional operator hints could also be used to represent physical
query plans. Making the query language and the optimized plans
similar would make it easier for users to debug performance prob-
lems and to inject explicit query plans. We also believe that the
step-by-step semantics of SaneQL makes it possible to implement
powerful and intuitive interactive query construction interfaces,
a topic we plan to investigate further. Finally, although SaneQL
already offers advanced abstraction capabilities, there are abstrac-
tions that would require a general macro system.
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