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ABSTRACT

Generative AI has made significant strides, yet concerns about
the accuracy and reliability of its outputs continue to grow. Such
inaccuracies can have serious consequences such as inaccurate
decision-making, the spread of false information, privacy viola-
tions, legal liabilities, and more. Although efforts to address these
risks are underway, including explainable AI and AI regulation
practices such as transparency, privacy protection, bias mitigation,
and social and environmental responsibility, misinformation caused
by generative AI will remain a significant challenge. We propose
that verifying the outputs of generative AI from a data management
perspective is an emerging issue for generative AI. This involves an-
alyzing the underlying data from multi-modal data lakes, including
text files, tables, and knowledge graphs, and assessing its quality
and consistency. By doing so, we can establish a stronger foun-
dation for evaluating the outputs of generative AI models. Such
an approach can ensure the correctness of generative AI, promote
transparency, and enable decision-making with greater confidence.
Our vision is to promote the development of verifiable generative
AI and contribute to a more trustworthy and responsible use of AI.

1 INTRODUCTION

Making effective decisions based on data requires data of high qual-
ity. The exact meaning of high quality varies from one application
to another, but typically it means that the data has undergone ver-
ification, validation, and evaluation to ensure its reliability and
accuracy for a specific use case or application. Furthermore, we
may also require that the appropriate levels of security and privacy
protection be in place. This is particularly crucial in fields such as
finance, healthcare, and government, where the decisions based on
the data can affect individuals and society as a whole. Organizations
that rely on good data for making important decisions must take
steps to ensure that the data they use is trustworthy and reliable.

Regrettably, real-world data is often incomplete, inconsistent,
or inaccurate [7, 16]. Researchers across different fields have in-
vested significant effort in addressing these issues. For instance,
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the database community has developed methods for detecting data
errors [2, 6, 17, 23, 24, 26, 27, 34ś36, 40], while the natural language
community has developed techniques for identifying fake news
and misinformation [5, 38].

The issue of data quality becomes more important in the era
of generative AI, where advanced generative models like GPT-4,
Midjourney, and SlidesAI can generate intricate outputs. This tech-
nology has immense potential to transform various fields, including
relational data synthesis, natural language question answering, im-
age generation for advertising and marketing, and many others.

More specifically, numerous companies have audacious and
transformative plans for integrating generative AI into a wide range
of their products, including Microsoft (Excel, Word, PowerPoint,
Bing Search), Google, Meta, Alibaba, and Baidu, and it is reasonable
to expect this trend to proliferate beyond the big technology com-
panies. Consequently, the data produced by these systems will be
utilized for multiple purposes, such as decision-making, knowledge
acquisition, and presentations. However, it is crucial to acknowl-
edge that the accuracy and reliability of the generated data cannot
be guaranteed. Therefore, it is vital to exercise caution when utiliz-
ing such data to make important decisions or draw conclusions.

There are significant risks associated with using łbadž data gen-
erated by generative AI, such as the following.

(1) Inaccurate decision-making: Decisions based on bad data can
lead to poor outcomes, e.g., financial losses.

(2) Spreading misinformation: Bad data can be utilized to dis-
seminate false information, and individuals may rely on the
knowledge from generative AI irrespective of its accuracy.

(3) Privacy violations: It can lead to privacy violations if personal
information is shared or used inappropriately.

(4) Legal liabilities: Organizations that make decisions based
on bad data can face legal liabilities if they cause harm to
individuals or violate laws and regulations.

(5) Damage to trust: The use of bad data can erode trust in orga-
nizations, leading to long-term reputational damage.

Although the risks discussed above are already prevalent when
using low quality data before the era of generative AI, they are
significantly amplified with the widespread adoption of generative
models. In addition to the many discussions about regulating gen-
erative AI, from a technical perspective there have been two main
bodies of work on the topic, explainable AI and AI regulations.

Explainable AI (XAI) [32, 33, 42] seeks to provide explanations
for the outputs produced by AI systems. While XAI can be a valu-
able tool for improving the trustworthiness of generative AI, it
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tuple generation/completion/augmentation

Data Lake

district incumbent first elected

Ohio's_1st_congressional_district Steve_Chabot 1994

Ohio’s_2nd_congressional_district Rob_Portman 1993

Ohio’s_3rd_congressional_district Mike_Turner 2002

Ohio's_4th_congressional_district Mike_Oxley 1981

Year Title Role

2006 Miles from Home Natasha Freeman

2006 Waist Deep Coco

2007 Stomp the Yard April Palmer

2008 One Missed Call Shelley Baum

2008 The Love Guru Prudence Roanoke

Meagan Good’s Filmography

Generative  

AI

Figure 1: Generative AI can generate (a) values in tuples and (b) text. Our system, VerifAI, tries to either verify or refute

generated value, by reasoning the (generated data, evidence) pair where the evidence is discovered from data lakes.

cannot completely eliminate concerns regarding the accuracy and
reliability of generated outputs. This is due in part to the fact that
generative AI models can be highly complex, which makes it diffi-
cult to provide a complete explanation of how a given output was
produced.

AI regulations involve the ethical and accountable development
and use of AI systems, which encompasses a range of practices
such as transparency, privacy protection, bias mitigation, and social
and environmental responsibility. Although model providers like
OpenAI and Google are making efforts to regulate the development
of generative AI models, the issue of flawed generative data is
expected to continue to be a significant challenge.

Our Vision. We advocate for the establishment of a more reliable
framework to evaluate the accuracy and reliability of generative AI
outputs. We propose a data management perspective for verifying
generative AI outputs that is based on identifying supporting data
from data lakes and reasoning with it in order to assess the quality
and consistency of the generated data. We believe that a verification
approach can complement the aforementioned approaches in order
to ensure that systems using generative AI are deployed responsibly,
effectively, and in a trustworthy manner. It is important to clarify
that our proposed approach focuses on verifying generative data
that has ground truth, as opposed to subjective data [22].

We illustrate our approach with the following examples based
on running our proposed framework VerifAI.

Example 1. [Tuple generation/completion/augmentation (Fig-

ure 1(a)).] Consider the prompt that provides a serialized table with

missing values in attribute incumbent and asks ChatGPT to com-

plete these tuples. The new table with completed tuples by ChatGPT

is shown below the prompt.

For the first tuple, VerifAI can łsearchž a tuple in the data lake

that verifies the imputed and generative value that the incumbent

value is correct.

For the third tuple, VerifAI can search a tuple and a text file in

the data lake that both validate the imputed value to be incorrect.

[Text generation (Figure 1(b)).]We asked ChatGPT a question łDoes

Meagan Good play a role in Stomp the Yardž and got an answer as

shown in the figure.

VerifAI can search a text file and a tuple in the data lake that

both validate the generated text to be incorrect. ✷

The examples above only scratch the surface of generated (bad)
data. These data can be leveraged for downstream applications such
as analytical (e.g., OLAP) queries and data visualization, as well as
query acquisition. However, if not properly managed, generative
data can have negative and even disastrous consequences.

Despite efforts from model providers (e.g., OpenAI) and retrieval-
enhanced methods [3, 9, 15] for improving the accuracy of genera-
tive AI during the data generation process, the spread of misinfor-
mation from generative AI will remain a significant problem. Our



VerifAI: Verified Generative AI CIDR’24, January 14-17, 2024, Chaminade, USA

proposed post-generation verification approach can also comple-
ment these methods by enhancing the overall reliability of genera-
tive AI. By combining our verification approach with those existing
and rapidly evolving generative methods, we can create a syner-
gistic effect that further improves the accuracy and reliability of
generative AI.

Challenges. Generative AI can generate data in various contexts
and domains, utilizing the world knowledge that the model has
learned [15]. However, when the generated data is dirty or inac-
curate, traditional data cleaning [13, 25, 30, 37, 46] and data inte-
gration [11, 14, 31, 39, 41, 43, 44] methods that rely on the data at
hand may not be sufficient. Moreover, when generative AI is used
in the context of a specific enterprise, we may need to consult data
that is specific to the enterprise in order to verify the correctness
of the generated data, raising several new challenges.

(C1) Indexing and searching multi-modal data lakes. Although
there have been efforts to manage data lakes with relational
data [18] and textual data [29], indexing multi-modal data
lakes at scale and effectively retrieving top-k data instances
cross data modalities remains an unsolved problem.

(C2) Cross-modal data verification. Data matching is a key con-
cept in data integration and data cleaning [11]. However,
matching and reasoning across different data modalities are
not well-addressed.

(C3) Trust of heterogeneous datasets in multi-modal data lakes.

Evaluating the trustworthiness of web sources for knowl-
edge fusion has been well studied [12]. However, evaluating
the trustworthiness of different datasets in data lakes, par-
ticularly when they are not well curated, remains an open
problem.

(C4) Provenance of the verification process. Fully automated ver-
ification of generative AI outputs can be challenging. It is
important to store the lineage of the end-to-end verification
process, in case the retrieved data from data lakes is flawed or
incomplete, or the verification process itself makes mistakes.
This allows for later human checks or debugging.

Contributions. In this paper, we present VerifAI, a framework
for verified generative AI, which offers the following contributions:

(1) A modularized framework. We propose a modular frame-
work for verifying generative data that is extendable to differ-
ent types of data sources and generative data. The framework
comprises three main components: an Indexer, a Reranker,
and a Verifier, as illustrated in Figure 2 (more details can
be found in Section 3).
• The Indexer module serves the purpose of indexing
datasets from diverse modalities including but not limited
to tuples, tables, text, and knowledge graphs. It comprises
generic and coarse-grained indexes that aid in this task.

• The Rerankermodule is responsible for reranking the top-
k data sources from the Indexer with respect to a specific
generated data object. This step is more fine-grained and
task-specific in nature, in order to further optimize the
ranking of the retrieved data sources.

Data Lake Indexer

Reranker

Verifier

Generated 

Data G

Figure 2: An overview of VerifAI.

For each retrieved data instance, the Verifier module will
determine whether it can verify or invalidate the generated
data object.

(2) Experiments. We show that VerifAI achieves high accu-
racy for generated tables and text (Section 4), which demon-
strates the feasibility of using multi-modal data lakes to
verify generative AI.

(3) Open problems. Contribution (1) highlighted the potential
of VerifAI in addressing challenges C1 and C2. However,
there are still open problems for these challenges, as well
as for other challenges such as C3 and C4, which will be
discussed in Section 5.

2 VERIFIED GENERATIVE AI: THE PROBLEM

Generative Data. Generative data generally refers to data that is
created or generated by a model or algorithm, rather than being
directly observed or collected from the real world.

In the context of this work, we specifically focus on data gen-
erated by large language models, such as ChatGPT, using natural
language generation techniques. This includes text data such as
paragraphs and sentences, or tabular data such as tuples and tables,
but not other data modalities such as image data or graph data.

Multi-Modal Data Lakes. Amulti-modal data lake provides a sin-
gle repository or data store for storing and managing multiple types
of data, including structured, semi-structured, and unstructured
data. This can include tables, text, knowledge graphs, images, audio,
and other forms of digital content.

This work focuses on showcasing data lakes that are designed
to handle and integrate tabular data and text data.

In the rest of this paper, we will use the term data object for
generated data and data instance for a specific unit of data within
a data lake, which can take the form of a tuple, table, or text.

We will briefly discuss potential strategies for supporting and
integrating other data modalities (e.g., knowledge graphs) into a
multi-modal data lake in Section 5.

Verified Generative AI. Given a generated data object g, and a
multi-modal data lake L, the problem of verified generative AI

involves discovering a set of data instances Lg from L relevant to g,
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Figure 3: Modules of VerifAI.

and verifying each data instance x ∈ Lg as a mapping from (g, x)

to a ternary value as verify(g, x) → 0|1|2, indicating verified |

refuted | not related, respectively.

Remark. The verification process is specific to the application and
requires additional metadata from the user. For instance, when
given a tuple, the verification requirement could be either on the
entire tuple or on a specific column e.g., only verifying the attribute
incumbent in Figure 1(a).

3 THE DESIGN OF VERIFAI

An overview of different modules of VerifAI is given in Figure 3.

3.1 Indexer

The Indexer module is designed based on two key principles:

• Task-agnostic: It can support a wide range of tasks and use
cases, making it versatile and adaptable to different needs.

• Support for both content- and semantic-based search: It can
handle traditional string similarity search as well as vector-
based search, enabling more advanced search and retrieval
capabilities.

Based on the aforementioned principles, VerifAI currently con-
sists of two indexes.

• Elasticsearch [19] supports content-based search, where ta-
bles or text files are serialized as strings and then indexed
by Elasticsearch.

• Meta Faiss [28] is a library for efficient similarity search
and clustering of dense vectors. We first use embedding
techniques (e.g., tuple-to-vec or text-to-vec using BERT) to
convert tuples or chunked text files into vectors, which are
then indexed by Faiss.

The above two types of indexes are commonly used for indexing
data lakes. For example, Aurum [18] utilizes Elasticsearch, while
Microsoft Azure Cognitive Search (https://azure.microsoft.com/en-
us/products/search) indexes embeddings (or vectors) of textual data.
Combining these two approaches can enhance recall and serve as a
foundation for indexing data lakes more effectively.

Remark. As these indexes are task-agnostic, the retrieved top-k
results may have low accuracy. To ensure the retrieval of correct
data instances, k is typically set to a large number (e.g., 100 to
1000 [29]). However, in order to achieve good accuracy with a
much smaller number of results after reranking, it is desired to
perform task-aware reranking over the retrieved results.

Combiner.While different indexes use different techniques (e.g.,
content- or semantic-based,), their retrieved results typically over-
lap. The Combiner simply combines these retrieved results from
multiple indexes and removes duplicates. Due to its simplicity, we
did not depict and discuss it in Figure 2.

3.2 Reranker

The retrieved results from multiple indexes are initially ranked in
a coarse-grained fashion using a task-agnostic similarity measure.
However, to achieve a more fine-grained and task-specific ranking
of the results, the Reranker module is utilized. The primary idea is
that, following the reranking process, we only need to focus on a
limited number of top-k ′ retrieved results (e.g., k ′ = 5).

Next, we describe two different approaches, one for reranking
(text, text) pairs, and the other for reranking (text, table) pairs.

• (text, text) Reranker: We adopt ColBERT [29], a holistic
approach to compare each token of a query and each token
of a retrieved text file, resulting in a more precise score.

• (text, table) Reranker: We have devised a semantic-
based reranking method between a natural language state-
ment and a table, called OpenTFV [21], for open domain
table-based fact verification.

Remark.We are currently working on expanding our support for
different types of fine-grained Rerankers, such as those used for
reranking (tuple, tuple) or (text, tuple) pairs.

3.3 Verifier

This reasoningmodule in our system determines whether generated
data is verified or refuted, based on a retrieved data instance. It
utilizes multiple Verifiers, each tailored to a specific task. An
Agent decides which Verifier to use for a given task.

https://azure.microsoft.com/en-us/products/search
https://azure.microsoft.com/en-us/products/search
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In VerifAI, we utilize two types of Verifiers. The first type
is a one-size-fits-all model such as ChatGPT. The second type is
composed of specific and localized models designed for different
tasks, such as the table fact verification model [20] for (text, table)
verification, and a fine-tuned RoBERTa model for (tuple, tuple)
verification.

While ChatGPT can be used by default for simplicity, there are
two main reasons why we support specific and localized models.

(1) Data privacy. Many applications (e.g., healthcare, gov-
ernment) contain highly sensitive information. One legiti-
mate concern when using externally hosted models such as
ChatGPT is data privacy. The model could potentially learn
and retain sensitive information from the data it has seen [1].

(2) Better accuracy. Specific and local models, when being fine-
tuned on specific datasets and tasks, can oftentimes outper-
form generic models such as ChatGPT, as will be shown later
in Section 4.

Remark. When retrieving data for a generated data instance, it’s
possible that we may retrieve multiple data instances that either
verify or refute the generated data object. This can occur for several
reasons, e.g., incorrect data instances being retrieved. Therefore,
understanding the trustworthiness of different data sources and
maintaining the provenance of verification are important.

4 PRELIMINARY RESULTS

In this section, we showcase preliminary experimental results that
highlight the initial achievements of VerifAI in facilitating the
verification of generative AI.

4.1 Setting

We consider three verification tasks.

Generative AI Task Retrieved Data Modalities
tuple completion tuples
tuple completion textual files
text generation relational tables

Note that the (text, text) verification problem is essentially equiv-
alent to the standard fact-checking problem in the natural language
processing community [29], which has already been demonstrated
to be viable. Therefore, for the sake of this discussion, we will focus
primarily on scenarios that involve tuples or tables.

Tuples in need of verification.We collected 100 tuples from web
tables. For each tuple, we randomly removed a non-key attribute
cell value and then asked ChatGPT to infer the missing value by
utilizing the given template provided below. If multiple tuples share
the same schema, we can handle them together as a batch.

Prompt template of tuple completion with ChatGPT

Question:

Table name
column 1 column 2 . . . column n
a1 NaN . . . z1

a2 b2 . . . NaN

. . . . . . . . . . . .

Please fill the missing values, annotated by NaN

ChatGPT will produce a complete table that doesn’t have any
missing values. An example of this is shown in Figure 1(a). However,
each tuple that has had missing values imputed must be verified.

Textual claims in need of verification.We perform a controlled
study to assess textual claims, employing 1,300 textual claims from
the TabFact [8] benchmark, which is currently the most advanced
benchmark for verifying the credibility of textual hypotheses by
utilizing a given table. This benchmark is suitable for our aim of
verifying textual claims. Nevertheless, it’s worth mentioning that al-
though TabFact offers a (textual claim, table) pair, our task demands
us to search the data lakes for table(s), which is an exceedingly
more difficult task.

Multi-Modal Data Lakes.We utilized 19,498 tables that contain
269,622 tuples, and 13,796 textual files. Of these, 16,573 tables
were taken from TabFact [8], while the others were sourced from
WikiTable-TURL [10]. Furthermore, since some cells contain ref-
erences to entities, such as links to Wikipedia pages, we gathered
13,796 entities and retrieved their corresponding text from the as-
sociated Wikipedia pages to obtain the textual files.

Verifier. ChatGPT can serve as the default Verifier for both data
types. The template employed to interact with ChatGPT during the
verification process is presented below.

Prompt template of verified with ChatGPT

Please use the evidence below to validate the generative data.
Evidence: [Use the retrieved tuple/table/text]
Generative Data: [Data object to be verified]
Result: Verified/Refuted/Not Related + Further explanation

It is worth mentioning that we have also developed specific and
localized models for certain scenarios. In the case of evaluating
(tuple, tuple) pairs, the local model’s accuracy is comparable to
ChatGPT [4]; therefore, we only present ChatGPT’s results. For (text,
table) verification, we employed our previous work PASTA [20] as
an alternative to ChatGPT. Later in the section, we will show that
PASTA outperforms ChatGPT for (text, table) verification.

Evaluation Metrics for Retrieval. We use Elasticsearch [19] to
retrieve the top-3 tuples and top-3 text files for each tuple with
an imputed missing value, top-5 tables for each textual claim. As
we have a small number of relevant data, we evaluate the retrieval
process using only the recall metric.

However, defining łrelevancež presents a challenge in evaluating
the performance of retrieval. Ideally, we would consider all data
instances in the data lakes that can support or refute the generative
data to be relevant. However, manually labeling relevant data for
each tuple or claim would be time-consuming and impractical.
Therefore, we take a different approach in this paper. As each tuple
has an original, complete counterpart in the data lake, we consider
it to be relevant evidence, while the remaining tuples are considered
irrelevant. Moreover, we consider the textual files about entities
present in a tuple to be relevant evidence as well. Additionally, each
textual claim is associated with a corresponding table in the original
dataset. Thus, we consider the corresponding table to be relevant
evidence, while the remaining tables are considered irrelevant.

Due to space limitations, we will not report the effectiveness of
reranking in our study. However, it’s worth noting that reranking
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Generated data type retrieved data type recall

tuple
tuple 0.99
text 0.58

textual claim table 0.88

Table 1: Recall on retrieved data instances.

(text, text) pairs has been proven effective in ColBERT [29], and
reranking (tuple, tuple) pairs has been discussed in RetClean [4].

Evaluation Metric for Verifier. For evaluating the Verifier’s
performance, we use accuracy as the measure. A Verifier’s deci-
sion is considered correct in one of the following three cases:

(1) When the retrieved data instance supports the imputed tuple
or claim, the Verifier outputs łtruež;

(2) When the retrieved table refutes the imputed tuple or claim,
the Verifier outputs łfalsež;

(3) When the retrieved data instance can neither support nor
refute it, the Verifier outputs łnot relatedž. To compare
ChatGPT with PASTA that only offers two different answers:
łtruež or łfalsež, in this case, we consider it’s also correct
when PASTA outputs łfalsež.

4.2 Preliminary Results

The accuracy of ChatGPT in imputing missing values for tuples and
determining the correctness of claims is only 0.52 and 0.54, respec-
tively, in the absence of additional data. These findings emphasize
the significance of verifying generative data to guarantee accuracy
and dependability.

Table 1 displays the retrieval outcomes, revealing that the re-
trieval module performs well for (tuple, tuple) and (textual claim,
table). However, it doesn’t retrieve the associated text files effec-
tively based on a tuple. This is due to the fact that we simply utilized
Elasticsearch as the Indexer and only retrieved three text files. We
anticipate that the retrieval performance will improve when we ex-
pand the number of retrieved files and conduct further experiments
by adding the Reranker.

Table 2 reveals that as the Verifier, ChatGPT can accurately
determine whether the imputed value is correct or not, with a high
accuracy of 0.88. Regarding textual claims, we present results in
two settings. When a relevant table is retrieved and provided as
evidence to the Verifier in the form of a (text, relevant table) pair,
PASTA is able to verify the textual claim with higher accuracy than
ChatGPT based on the table. However, many retrieved tables are
irrelevant to the claim. In all (text, retrieved table) pairs, PASTA’s
accuracy drops to 0.72 because it hasn’t encountered this scenario
during training. On the other hand, ChatGPT has superior general-
ization capabilities and performs better than PASTA when dealing
with many irrelevant tables.

In Figure 4, we present a case of verifying a textual claim based
on retrieved tables using ChatGPT. VerifAI retrieves two tables
E1 and E2, where E1 can be used with an aggregation query to
refute the claim while E2 is not related because it is for the year
1959. The red boxes in Figure 4 show that ChatGPT can provide
not only a verification result but also some explanation. Hence,
when the retrieved data is highly related to the generative data,

ChatGPT PASTA

(tuple, tuple+text) 0.88 NA
(text, relevant table) 0.75 0.89

(text, retrieved table) 0.91 0.72

Table 2: Evaluation on Verifier.

            Claim: In 1954 u.s. open (golf), the cash prize for tommy bolt,  

            fred haas,  and ben hogan was 960 in total. 

            (Ground Truth: a false claim that should be Refuted) 

Retrieved Evidence and Verification 

Table E1: 1954 u.s. open (golf) 

I place I player I country I score I to par I money I 

I t1 I ed furgol I united states I 71 + 70 + 71 + 72 = 284 I + 4 1 6000 I 

I t2 I gene littler I united states I 70 + 69 + 76 + 70 = 285 I + 5 I 3600 I 

| t3 I lloyd mangrum I united states I 72 + 71 + 72 + 71 = 286 I + 6 | 1500 I 

| t3 I dick mayer I united states I 72 + 71 + 70 + 73 = 286 I + 6 | 1500 I 

| t5 I bobby locke I south africa I 74 + 70 + 74 + 70 = 288 I + 8 | 960 | 

I t6 I tommy bolt I united states I 72 + 72 + 73 + 72 = 289 I + 9 | 570 I 

I t6 I fred haas I united states I 73 + 73 + 71 ÷ 72 = 289 I + 9 | 570 I 

| t6 I ben hogan I united states I 71 + 70 + 76 + 72 = 289 I + 9 | 570 I 

I t6 I shelley mayfield I united states I 73 + 75 + 72 + 69 = 289 I + 9 | 570 I 

I t6 I billy joe patton (a) I united states I 69 + 76 + 71 + 73 = 289 I + 9 1 0 1 

Verification result: Refuted.  Explanation: The cash prize for Tommy Bolt,  

Fred Haas, and Ben Hogan was $570 each, totaling $1710. 

Table E2: 1959 u.s. open (golf) 

I player I country I year (s) won I total I to par I finish I  

I ben hogan I united states I 1948, 1950, 1951 , 1953 | 287 | + 7 I t8 I  

I cary middlecoff I united states I 1949, 1956 | 294 I + 14 | t19 I  

| liack fleck I united states I 1955 | 294 I + 14 I t19 I  

| liulius boros I united states | 1952 | 297 | + 17 | t28 I  

I tommy bolt I united states | 1958 | 301 | + 21 I t38 I V2:  

Verification result: Not related.

Figure 4: Verifying a textual claim using retrieved tables.

local models like PASTA have higher accuracy while protecting
privacy. In contrast, ChatGPT is better at generalizing and providing
explanations for further judgments. Users can select the appropriate
model based on their requirements.

In summary, we have evaluated the usefulness of VerifAI

through various experiments and demonstrated several use cases
in Figures 1 and 4.

5 OPEN PROBLEMS

In this paper, we propose a framework called VerifAI that ad-
dresses the growing concern about the reliability of generative AI,
which is leading to the spread of misinformation at an alarming
rate. The modular design of VerifAI enables the verification of
generated data using multi-modal data lakes, paving the way for
research activities that will produce practical solutions for enhanc-
ing the reliability of generative AI. In addition, we have identified
important open problems that can make significant advances in
this field and improve the reliability of generative AI.

• Cross-Modal Data Discovery. Data discovery is a challenging
problem in data preparation [18], particularly in data lakes that
contain heterogeneous data stored in various formats, including
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structured (e.g., tables), semi-structured (e.g., graphs), and unstruc-
tured data (e.g., images and videos).

Unlike data lakes that contain only relational tables, discovering
data from different modalities requires addressing the heterogeneity
of the data.

To address this issue, a promising direction is to explore cross-
modal representation learning, which involves encoding data from
different modalities into a homogeneous vector space. This ap-
proach can facilitate a unified data discovery process, such as using
a semantic-based indexer, as illustrated in Figure 3.

• Cross-Modal Verification. In addition to textual and relational
data, datasets in other modalities, such as knowledge graph en-
tities (or small sub-graphs), can contain valuable information for
verifying generative AI. As discussed earlier, generic models like
ChatGPT may not provide a comprehensive solution for reasoning
due to challenges such as privacy and accuracy.

Therefore, a promising direction is to develop local models that
are specifically trained for certain use cases, such as (text, knowl-
edge graph entity) or (tuple, text). By focusing on specific cases,
these local models can providemore accurate and effective solutions
for verifying generative AI.

• Trustworthiness of Data Sources. The accuracy of discovering
and verifying data across different modalities in a data lake can
be influenced by the quality and reliability of the underlying data
sources.

Therefore, it is crucial to assess the trustworthiness of different
sources accurately to enhance the overall accuracy and reliability
of the entire verification process.

• Provenance Management. It is important to maintain a record
of the provenance of data instances or sources used in verification
to facilitate further human checking or debugging.

• Managing Data Generated by Generative AI. Generative AI
solution providers, including OpenAI, are continuously collecting
prompts and generated data. While this information is valuable for
improving generative AI models, it can also be useful for end-users,
particularly enterprise users.

Therefore, a promising direction is to explore how to manage the
(conversational) prompts and data generated by generative AI to
enable better prompt engineering and data lineage tracking, similar
to ModelDB [45] which is used for managing machine learning
models. Such a solution would enable end-users to better facilitate
effective collaboration between different stakeholders.
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