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ABSTRACT

Field Programmable Gate Arrays (FPGAs) are more and more be-
coming a viable option for implementing data processing pipelines
as their computing capacity as well as the access bandwidth be-
tween host and device memory continue to increase. Unfortunately,
nowadays hardware description languages are still mainly used for
programming FPGAs which implies major limitations. To tackle this
issue, our paper shows that the general-purpose parallel processing
architecture SIMD (Single Instruction Multiple Data) is a perfect
match for FPGAs. With this specific architecture, we are able to
consider an FPGA as SIMD processing unit and the necessary SIMD
instruction set can now be implemented in C++. As we will present,
this offers a lot of advantages if both software (SIMDified query
processing) and hardware can be written consistently in C++.

1 INTRODUCTION

Generally, it can be stated that the relationship between hardware
and software has reached a crucial point in time. While software
has benefited for many years from higher clock cycles of modern
CPUs, hardware components are still advancing at an incredible
speed, providing a rich bouquet of novel techniques. For example,
in the area of processing units, the core count has been increased
and internal techniques like sophisticated SIMD (Single Instruction
Multiple Data) instruction set extensions, pre-fetching, or branch
prediction have been dramatically improved within modern CPUs.
Moreover, alternative processing unit approaches such as GPGPUs
(General Purpose Computation on Graphics Processing Unit) or
FPGAs (Field Programmable Gate Arrays) have been developed.
These alternative processing units are becoming more and more ac-
cessible and with the emerging interconnect Compute Express Link
(CXL) [25] connectivity will improve dramatically. However, with
these emerging opportunities, there also arises a plethora of new
challenges regarding application implementation and integration
on these hardware platforms.

In particular, FPGAs are an increasingly viable option for im-
plementing efficient data processing pipelines [6, 14, 20], as they
have recently gained increasing computational capacity and high-
bandwidth access to device and host memory. FPGAs are integrated
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circuits that are configurable after being manufactured at any time
and being internally composed of programmable logic blocks, a
collection of on-chip memories, and arithmetic units (DSPs). To
create a custom hardware module for an FPGA, a hardware de-
scription language (HDL), e.g., Verilog, is usually used to describe
the operation mode of a specific application logic (state-of-the-art).
This description is then translated via several steps to an imple-
mentation for an FPGA. Then, this implementation behaves like an
application-specific integrated circuit. The main advantage of HDLs
is that they equip the developers with fine-grained control to define
a suitable data processing architecture leading to performant as
well as resource-efficient FPGA designs. However, this fine-grained
control makes programming more difficult and is therefore very
different from higher-level languages such as C/C++, which are
mainly used, e.g., for developing database query processing models.
Our Contribution: In this paper, we argue that the general-
purpose parallel data processing paradigm SIMD is a perfect match
for FPGAs. The SIMD architecture is characterized by the fact that
the same operation is simultaneously applied on multiple data el-
ements within a single instruction [11]. For more than a decade,
modern CPUs have already supported SIMD processing by vendor-
specific SIMD instruction set extensions, which are (i) explicitly
provided in higher-level programming languages such as C++ and
(ii) extensively used in the database domain as well [21, 22]. There-
fore, in order to consider an FPGA as a flexible SIMD processing
unit, we need a proper SIMD-oriented instruction set extension,
e.g., just like SSE or AVX for Intel® CPUs. To achieve this, we show
within this paper that the SIMD instruction set for an FPGA can be
implemented in C++ using Intel® oneAPI. We chose this approach,
since being able to build both software and the underlying archi-
tectural foundation in the same higher-level language yields many
benefits, with a slimmer code base being just one example. The
following aspects are covered in this paper:
e In Section 2, we introduce Intel®’s new cross-architecture
language Data Parallel C++ (DPC++). Moreover, we show
(i) that the DPC++ compiler is able to synthesize arbitrary
C++ code and (ii) to improve the performance a data parallel
approach may be the way to go.
e In Section 3, we discuss how to program a SIMD instruc-
tion set for FPGAs in C++ and introduce various instruction
examples including micro-benchmark results.
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e Based on this, we present a use case study in Section 4 and
show how to port existing SIMD application code to FP-
GAs using two examples. One of these examples is the light-
weight integer compression algorithm Binary Packing. The
state-of-the-art SIMDification of this algorithm has some
disadvantages that can be circumvented with custom SIMD
instruction as introduced in Section 5. This clearly demon-
strates the flexibility of our concept with regard to a HW/SW
co-design.
Finally, we close the paper with a summary of learned best practices
in Section 6, a discussion of related work in Section 7, and a short
summary in Section 8. Our entire source code for this paper is
available on GitHub'2.

2 FPGA PROGRAMMING IN C++

To overcome the complexity of HDLs to describe the operation
mode of a specific application logic in FPGAs, manufacturers of
FPGAs are also actively developing tools that enable programming
of FPGAs in higher-level languages such as C/C++. Most recently,
Intel® has released a new and powerful software development kit
called oneAPI providing a unified programming model for diverse
architectures such as CPUs, GPUs, and FPGAs [23]. In particular,
Intel®’s oneAPI features a new cross-architecture language Data
Parallel C++ (DPC++) as an implementation of SYCL™ [15], which
is a heterogeneous programming framework built on top of modern
C++ [4, 23]. DPC++ is open-source [13] and based on Clang/LLVM.

Moreover, DPC++ extends SYCL™ by adding additional fea-
tures to enable peak application performance as well as to increase
programmer productivity [4]. One of these extensions is Unified
Shared Memory (USM), which defines a pointer-based alternative
to the buffer abstraction in SYCL™ [4]. Instead of using specific
SYCL™ buffer objects for memory allocations, USM provides a fa-
miliar pointer-based approach to the regular C++ pointers. Based
on that, USM defines three types of memory allocations: (i) device,
(ii) host, and (iii) shared. While device allocations are only directly
accessible through dereferencing a pointer on the actual device
(FPGA or GPU), host or shared allocations are accessible on both
the host (CPU) as well as on the device. The difference between host
and shared allocations is that host allocations remain in host main
memory, while shared allocations migrate to where they are being
used without programmer intervention. Contents of the device-
allocated memory have to be either explicitly populated or moved
back to the host by, e. g., a SYCL™ memcpy operation from the host.

The foundation of Intel®’s oneAPI for FPGA is a Board Support
Package (BSP) describing all hardware interfaces to the FPGA, like
PCle and DDR4. It also provides a shell design for these interfaces
for faster application logic integration and synthesis to the FPGA.
In particular, USM is part of the BSP, which enables us to let the
data transfers be managed by the FPGA itself. This functionality
frees the host CPU from the data transfer management. Moreover,
the CPU is only involved in creating input and output buffers on the
host memory and the FPGA gets the data as needed by the oneAPI
application logic. The virtual-to-physical address translation for
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1 template<typename T>

2 auto aggregate(T const * data, size_t elCount) {
3 T result = 9;

4 for (; data!=data + elCount; ++data) {

5 result += xdata;
6 }

7  return result;
83

Figure 1: Aggregation - Naive scalar approach.

data transfers is handled by the BSP. Throughout this paper, we

conduct experiments on different FPGA cards:

(1) Agilex: A BittWare® I1A-840f card, which is equipped with an
Intel® Agilex® 7 AGF027 FPGA (BSP 2022.2) and 4x 16 GB
DDR4. The interface to the host (Intel® XEON® Platinum
8351N) is a PCle 4.0 with 16 lanes.

(2) Stratix 10: An Intel® D5005 PAC card equipped with an Intel®
Stratix® 10 SX 2800 FPGA (DCP 2.0.1) and 4x 16 GB DDRA4.
The interface to the host (Intel® XEON® Gold 6238R) is a
PCle 3.0 with 16 lanes.

From here on, we refer to the hardware either as Agilex or Stratix

10 for brevity.

2.1 Naive C++ programming

Generally, the DPC++ compiler is capable of synthesizing arbitrary
C++ code into an FPGA design. To evaluate this capability for data
processing, Figure 1 exemplarily shows a straightforward scalar
aggregation method in C++ that sums up the individual element
values of a column (represented via the pointer data). The data type
is a template parameter and the pointer to the column (data) as well
as the number of elements (elCount) are input parameters. The
summation is done by a simple loop over all elements adding each
element value to the variable result. At the beginning, the vari-
able result is initialized with zero. Figure 3a depicts the achieved
throughputs for host allocated uint64_t data for both FPGA cards
and for different data sizes. In general, our achieved throughputs
with increasing data volumes remain very low compared to the max-
imum possible bandwidth. There are many reasons for that, e. g.,
the DPC++ compiler may have difficulties parallelizing the code
due to the data dependency in the loop. In addition, only individual
data elements are requested and probably exclusively transferred
via PCle, which does not exhaust the potential bus width.

2.2 Data Parallel C++ programming.

To improve the throughput, a data-parallel approach based on the
SIMD parallel processing paradigm may be a good candidate, as
it represents a well known model from CPUs. Figure 2 shows the
rewritten code with data parallelism in mind, where the number
of elements processed in parallel (VL) is an additional template
parameter. The inner loop (lines 7-9) performs an elementwise
addition for VL elements, while the outer loop now has a step size
of VL elements (line 5). To ensure that the DPC++ compiler properly
detects the data parallel processing opportunity, the inner loop is
annotated with the pre-processor directive pragma unroll (line
6). In the end, the individual intermediate sums still have to be
added up (lines 11-13), yet the overall contribution of that part
to the execution time is negligible. Figure 3b depicts the achieved
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throughputs for host allocated uint64_t data for increasing data
level parallelism. As visible, the throughput on both FPGA cards
increases with growing data parallelism reaching nearly interface
speed for an inner loop count of 16 elements (1024 bits) on the
Stratix 10, and 8 elements (512 bits) on the Agilex, respectively.

2.3 Using specialized data types

A common trend in modern programming frameworks are spe-
cialized data types that allow the compiler to better optimize the
code, e.g., through using hardware-provided counterparts. For
Intel® FPGAs, Algorithmic C (AC) Datatypes [12] constitute such
optimized data types. AC-Types are class templates representing
arbitrary-length integers, fixed-point as well as floating-point data,
and complex datatypes. Those types bring in two remarkable ad-
vantages. First, they enable bit-accurate calculations and access to
the underlying data. Second, when using AC-Types, the compiler
can create narrower data paths, which may increase the maximum
frequency (fmax) of the resulting block design, and are thus increas-
ing the algorithm’s performance. Figure 4 depicts the adjusted code
from Figure 2, but instead of using plain C types, we are utilizing
an ac_int (AC-Type for integers) with a bitwidth corresponding
to the given plan C integer type. In general, the code looks very
similar with two exceptions:

(1) the base type for the register array is changed, and

(2) the initialization of the register array is done using a member

method of ac_int rather than an implicit cast.
While the algorithm does not directly benefit from the strenghts of
the AC-Types, like bit-accurate slicing and shifting, we will show
in the following that better designs can be achieved even for such
a scenario.

2.4 Analyzing FPGA resources

In the previous sections, we have already presented experimental
throughput results for the variants with the plain C-types. For our
simple aggregation example, the optimization with the specialized
ac_int data types does not lead to a throughput improvement. Never-
theless, the usage of the specialized AC-Types has a resource-saving
effect as illustrated in Figure 3c. The table in Figure 3c shows the
used FPGA resources for our aggregation on Stratix 10 depending

1 template<typename T, size_t VL>

2 auto aggregate(T const x data, size_t elCount) {
3 T result = 0;

4 T tmp[VL] = {03};

5 for (; datal!=data + elCount; data+=VL) {

6 #pragma unroll

7 for (auto i=0; i<VL; ++i) {
8 tmp[i] += datal[il;

9 3

10 3}

11 for (auto i=0@; i<VL; ++i) {
12 result += tmp[i];

13}

14 return result;

15 }

Figure 2: Aggregation - Using a data parallel approach.
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on the number of elements processed in parallel (VL). For compar-
ison purposes, the FPGA resources for scalar execution are also
displayed as well. While all variants run with the same fpnax of
432.0Mhz, we observe differences in the necessary resources for a
given design and the overall latency. For every tested register size
(VL), using ac_int leads to lower latencies than the variants using
plain C-types. With regards to computing resource demands, the
ac_int variants need less adaptive look-up tables (ALUTs) and flip-
flops (FF) overall. In general, each variant uses less than 1% of the
available resources of our Stratix 10. The same applies for the Ag-
ilex FPGA card. As our investigated aggregation kernel is relatively
small and has only a single state that has to be maintained across
loop iterations, the necessary memory resource requirements are
generally negligible.

2.5 Summary

From our above presented investigation, we may conclude that the
DPC++ compiler is able to transform data parallel written code to
efficiently executable FPGA designs in a resource-efficient way.

3 PROGRAMMING SIMD INSTRUCTION SET

To leverage an FPGA as a regular SIMD-based processing unit
such as state-of-the-art CPU extensions (AVX or SVE) in C++, a
specific SIMD instruction set has to be defined, consisting of (i)
SIMD registers, (ii) instructions to load or store data, and (iii) actual
data processing capabilities. The advantage of our approach is that
the necessary FPGA SIMD instruction set can now be implemented
in DPC++, as we will show in the remainder of this section.

3.1 Register Definition

To specify our FPGA SIMD instruction set, we first need defi-
nitions of the relevant data types, such as a SIMD register and a
mask data type. As shown in Section 2, a regular array is sufficient
to enable data parallel processing on the FPGA. The underlying
data type for the array can be any arithmetic type, e. g., uint32_t or
double. Our prototype uses a fixed-width SIMD register instead of
a fixed-element count for better comparability with Intel® SIMD
ISAs. Figure 5 summarizes our advanced DPC++ implementation of
variable-length SIMD registers and mask types based on arrays. To
calculate the number of elements within our array, we divide the
target register size by the bit width of the data type (Figure 5 lines
6-7). With this helper function, we can define a type register_t as
an alias for our SIMD register. To help the compiler recognize the
data parallelism - also called vectorization — potential, we use the
OpenCL-specific memory attribute register’ (line 9). SYCL™ pro-
vides a variety of existing classes and types that can be used to
improve the resulting design and, thus, the overall performance. As
described in the previous section, AC-Types are one prime example.
While it is conceivable to use the desired vector length (VLb) as the
number of bits in an AC-Type to represent a SIMD register, actual
calculations are predominantly executed on C-Type granularity for
our use cases. An exception for the granularity is the category of
scalar-integer instructions like binary logic operations, like AND,

3SYCL™, as an high-level abstraction layer on top of OpenCL defines the [[in-
tel:fpga_register]] attribute. However, with the current compiler version, this attribute
could not be used for type definitions.
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(a) Scalar aggregation.

(b) Data parallel aggregation.

(c) Stratix 10 resources.

Figure 3: FPGA programming in C++ — evaluation results.

1 template<typename T, size_t VL>

2 auto aggregate(T const * data, size_t elCount) {
3  using ac_t =

4 ac_int<sizeof (T)*CHAR_BIT, std::is_signed_v<T>>;
5 using register_t = std::array<ac_t, VL>;

6 register_t tmp;

7 T result =

8  #pragma unroll

9 for (auto i=@; i<VL; ++i) {
10 tmp[i].template set_val<AC_VAL_0>();

11 3}
12 for (; datal!=data + elCount; data+=VL) {

13 #pragma unroll
14 for (auto i=0; i<VL; ++i) {

15 tmp[i] += datal[il;

16 3}

17 3}

18 for (auto i=0; i<VL; ++i) {
19 result += tmp[i];

20 %

21 return result;

22 %}

Figure 4: Aggregation - Using a data parallel approach with
the specialized data type ac_int.

or XOR. Those instructions can be carried out on the given data
without regard to the underlying type since only the respective
bits contribute to the result. In some scenarios, shift operations
should be carried out holistically on all bits of the vector, resulting
in complex logic if we use an array of smaller types. Consequently,
we defined an si_register_t that aliases an ac_int with VLb* bits if
the underlying type is integral, e. g., short or long. In any other
case, the type is just an alias for the register_t since we argue that
bit logic should not be directly executed on floating point values.
With the advent of Intel AVX-512 and ARM SVE, a specific SIMD
mask type was introduced, representing the validity of every ele-
ment within a given SIMD register. For Intel AVX-512, this mask
type translates to an unsigned integer value that contains as many
bits as there are values in a register. The n-th bit indicates the va-
lidity of the n-th element, e. g., if the third bit is set to one, the third
element in the register is valid, and vice versa if the bit is set to
zero. However, with arbitrary-length SIMD registers, corresponding
register-mask types must also be of arbitrary length. Considering

“The ac_int is always unsigned to avoid a sign extension.

#include <sycl/ext/intel/ac_types/ac_int.hpp>
#include <array>
#include <climits>
template<typename T, size_t VLb>
struct oneAPIsimd {
constexpr static size_t VL() {

(8 B O I

(=)}

7 return (VLb/(sizeof (T)*CHAR_BIT));
8 %}

9 using register_t =

10 __attribute__((register)) std::array<T, VL()>;
11 using si_register_t =

12 std::conditional_t<

13 std::is_integral_v<T>,

14 ac_int<VLb, false>, register_t
15 >

16 using mask_t = ac_int<VL()), false>;
17 35

18 template<typename T, size_t VLb>

19 using reg_t = typename oneAPIsimd<T, VLb>::register_t;
20 template<typename T, size_t VLb>

21 using si_register_t =

22 typename oneAPIsimd<T, VLb>::si_reg_t;

23 #define INLINE __attribute__((always_inline)) inline

Figure 5: Variable-length (VL) SIMD registers and mask types.

a register size of 1024 bits, holding 8-bit wide data elements, up
to 128 values can be kept and processed within a single register.
Consequently, a corresponding mask would exceed the maximum
bit width of unsigned long long and, thus, must be represented as
a vector of two 64-bit values. For such a scenario, ac_int seems
to be a perfect match. Not only is the bit width programmatically
defined, but accessing a specific bit or a slice of bits is supported
and especially well translatable into a digital circuit.

3.2 Instruction Definition

Now that we have defined the necessary fundamental types to exe-
cute data parallel operations on vectors of data with an arbitrary
degree of parallelism, we can define relevant instructions. For com-
patibility reasons, we followed the schema of the SIMD instruction
set extensions from Intel and ARM and identified four instruction
categories: (i) load/-store, (ii) element-wise, (iii) horizontal, and (iv)
scalar-integer instructions.
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1 template<typename T, size_t VLb>

2 INLINE auto load(T const * memory) -> reg_t<T,VLb> {
3 reg_t<T,VLb> reg{};

4 #pragma unroll

5 for (size_t i=0; i< oneAPIsimd<T,VLb>::VL(); ++i) {

6 reg[i] = memory[i];
}

8 return reg;

9}

10 template<typename T, size_t VLb>

11 INLINE void store(T * memory, reg_t<T,VLb> const & reg) {
12 #pragma unroll

13 for (size_t i=0; i<oneAPIsimd<T,VLb>::VL(); ++i) {

14 memory[i] = regl[i];

15 3}

16 }

Figure 6: SIMD-register load-/store functions (VL).

Load-/Store Primitives. Contrary to a scalar processing, (i) SIMD
registers must be explicitly populated with data elements from main-
memory and (ii) data in SIMD registers must be explicitly written
to the main memory. Appropriate instructions must be available
within the SIMD instruction set. We have implemented two DPC++
functions assuming that the memory is directly accessible (for
example, via USM) with the corresponding names for both aspects
(see Figure 6). The implementation is straightforward and follows
the general scheme of Figure 2. A scalar loop iterates over the
memory or register and copies either data into a new register or
manifests the content of a register in the memory (Figure 6 lines
5-7 and 13-15).

Element-wise Register Instructions. Generally, two classes of
SIMD register processing instructions can be distinguished: (i)
element-wise and (ii) horizontal instructions. Element-wise instruc-
tions are processing operations that are independently applied to
every element within a given register representing an easy target
for a data parallel, dependency-free processing. Such instructions
also usually output a register with updated or manipulated ele-
ments. Well-known examples are calculation operations (e. g., add,
subtract, multiply), and binary operations (e. g., shifting, OR, and
AND). While unary instructions exist, e. g., counting the leading
zeroes of every element, most instructions are binary. The latter
ones take either a scalar value as the second operand, which is then
used for executing the operation element-wise (e. g., shifting by
a constant, or a modulo operation), or a complete register, where
corresponding (i. e., same-position) elements from both registers
are the input for the operation.

1 template<typename T, size_t VLb>
2 INLINE auto modulo(reg_t<T,VLb> const & a, T const m) {
3 reg_t<T,VLb> result{};

4  #pragma unroll

5 for (size_t i=0; i<oneAPIsimd<T,VLb>::VL(); ++i) {
6 result[i] = a[i] % m;

7%

8 return result;

9%

Figure 7: Element-wise modulo instruction.
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1 template<typename T, size_t VLb>

2 INLINE auto countlLeadingZeroes(reg_t<T,VLb> const & a) {
3 reg_t<T,VLb> result{};

4 auto const bitCount = sizeof (T)*CHAR_BIT;

5 #pragma unroll

6  for (size_t i=0; i<oneAPIsimd<T,VLb>::VL(); ++i) {

7 Tv=alil;

8 T clz = bitCount+1;

9 T cmp = (T)1<<(bitCount-1);

10 #pragma unroll

11 for (size_t j=0; j<bitCount; ++j, cmp>>=1) {

12 clz = (((v&cmp) != @) && (j<clz)) ? j : clz;
13 }

14 result[i] = clz;

15 %}

16 return result;

17 3

Figure 8: Element-wise count leading zeroes instruction.

Figure 7 shows our DPC++ implementation of the well-known
modulo function, i. e., it computes the remainder of the division
of every element in the register with a constant scalar value (m).
The code shows remarkable similarities to the load operation with
the difference that the results of the individual lanes depend on the
inputs. Another example of an element-wise instruction, namely
a leading zero count, is depicted in Figure 8. For every element,
the number of leading zeroes is counted and written to the corre-
sponding position of the result. This is done by a nested loop that is
carried out for every element in the register. The loop iterates over
every bit position, starting at the most significant bit, and checks
whether the bit is set to one. If so, the result value (clz) is set to
the current position in the loop (line 12). As we only want to get
the highest position of a bit set to 1, we check whether the current
value of clz is greater than the current position. If so, we have yet
to find a 1-bit. While this implementation looks rather cumbersome
from a CPU-centric point of view, such a pattern can be highly
beneficial for FPGAs if the loop can be fully rolled out and thus
forms a pipeline.

Figures 9a and 9b show results of micro-benchmarks of both
presented element-wise instructions. The micro-benchmarks are
executed on Stratix 10 as well as on Agilex with different register
sizes ranging from 128 bit up to 2048 bit. As base type, we used the
plain C type uint32_t for the leading zero count, and uint64_t
for the modulo benchmark. The following conclusion can be drawn
from these results. First, the Agilex yields higher performance than
the Stratix 10, which follows the same trend compared to CPUs:
Algorithms can benefit freely from newer hardware. Second, as
long as we do not reach interface speed, wider SIMD registers lead
to higher throughput. Third, despite the fact that both instructions
are considerably complex from a logical circuit perspective, even
with only 2 elements being processed in parallel the measured
throughput comes close to full interface speed on the Agilex. On
the Stratix 10, only the leading zero count could achieve such a
high throughput with at least 8 values being processed in parallel.

Horizontal Register Instructions. In contrast to element-wise
instructions, horizontal register instructions do not treat the ele-
ments of a register independently. While these types of instructions
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Figure 9: Micro-benchmark results for selected SIMD instructions on FPGA.

Stage #3

result

return result[N-2]
Figure 10: Implementation of reduction using an addition.

contradict the data-parallel, dependency-free processing paradigm,
they represent an essential class of instructions. We can distinguish
two different types of horizontal functions, namely (i) reduction
and (ii) transformation instructions. The former reduces a register
to a scalar value, e. g., aggregation-sum, and the latter transforms
every element depending on the other elements within the register.
In the following, we will examine how those instructions can be
implemented on an FPGA through DPC++.

Reducing instructions basically carry out a register aggregation.
All elements within a single register contribute to the overall re-
sult, e.g., horizontal addition or maximum. Consequently, data
dependencies during execution can not be avoided. A naive imple-
mentation would initialize a result (r) and loop over all elements
([0, n)) within the register (v), applying the operation (e. g., addition)
with the result and the element r = v[i] + r. If the operation is not
commutative, the loop can not be parallelized, and every stage in
the pipeline must wait for the preceding stages to finish. While we
cannot entirely eliminate the existing data dependencies, we are
able to reduce the impact drastically by using a divide-and-conquer
approach. Instead of maintaining a single result for the whole loop,
we create n — 1 intermediate results (t). In the first pipeline stage,
we calculate the n/2 intermediate results as the sum of disjoint
pairs of elements from our input as illustrated in Figure 10. In the
next stage, we repeat the procedure but use the results from the
previous state as input. We repeat this until the last two interme-
diate results are used to calculate the final result. In total, we will
execute ld(n) stages that can be perfectly pipelined since the re-
sult of every stage serves as the input of every subsequent stage.
This general scheme is also called an adder tree. Figure 9c depicts

the throughput for this approach on both tested FPGA platforms
processing 500 MiB synthetically generated 64-bit integer data. As
the results clearly show, we can reach a notable performance yet
do not reach interface speed. This behavior is expected since our
benchmark calculates a running aggregate for a chunk of data. If
the compiler does not detect the pipeline friendliness of the given
instruction, the execution path must be stalled whenever a chunk of
data is processed. However, such horizontal operations occur only
sporadically and thus should not significantly impact the overall
performance of a given algorithm.

A further prominent example of a horizontal transformation in-
struction is the in-register conflict detection, that was introduced
by Intel® with AVX512. It became crucial through the newly added
capability of random access store operations (i. e., scatter instruc-
tion to store register elements back to multiple memory locations
at once). Specifically, an offset register that is used by a scatter
operation to write register elements to random memory locations
could contain equal values. This would lead to multiple elements
being written to the same memory address and thus, multiple values
could be overwritten with only one value being actually material-
ized. Conflict detection ensures the uniqueness of the values within
any register — i. e., our offset register in this example — and, thus,
eliminate potential write collisions. Each element in the register is
compared with all its predecessors. In the case of equality, the bit
is set at the position corresponding to the position of the duplicate.
Unique elements or elements without an equal predecessor will
have the value 0 in the result register after performing the con-
flict detection. To mimic this intrinsic on an FPGA, a nested loop
would be sufficient to achieve this behavior with simple C++ means.
However, the compiler failed to roll it out properly for the FPGA
in our experiments. For this reason, we used template metapro-
gramming to force the compiler to unroll the loop. Processing for a
specific lane is done using the function conflict_single (Figure 11a
lines 5-9). Each element at position [0, Idx) is compared to that at
position Idx (Figure 11a line 6). If they are equal, the result bit at
the respective position is set to 1 shifted by Idx. This "inner loop" is
called by conflict_impl for each element at position [1, max(Idx)]
(Figure 11b lines 7-8). Finally, the proper conflict instruction just
invokes conflict_impl.

Since all loops have been unrolled by template metaprogram-
ming, we only need to create the result register and pass it along
with the data register into the appropriate function. The depicted
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1 template<typename T, size_t VLb, size_t Idx, size_t... Idxs>
2 INLINE T conflict_single(

3 reg_t<T,VLb> const & data, std::index_sequence<Idxs...>

4 {

5 return ((MO [...| (

6 datalIdx+1] == datal[Idxs]

7 ? ((T)1 << (T)Idxs)

8 : (The)

9 )

10 }

1
2
3

10
113}
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template<typename T, size_t VLb, size_t... Idxs>
INLINE void conflict_impl(
reg_t<T,VLb> & result, reg_t<T,VLb> const & data,
std: :index_sequence<Idxs...>
) {
(
(result[Idxs+1] =
conflict_single<T,VLb,Idxs>(data,
std: :make_index_sequence<Idxs+1>{})

(a) Single comparison using fold expressions.

(b) Unrolled comparison of an element with all its predecessors.

Figure 11: Horizontal conflict detection.

1 template<typename T, size_t VLb, size_t Out, size_t In=0>
2 INLINE si_reg_t<T,VLb> append_si(

3 si_reg_t<T, VLb> source, si_reg_t<T, VLb> data

4){
5 constexpr size_t data_read_count{

6 ((VLb-0ut) <= (VLb-In))

7 ? (VLb-Out)

8 : (VLb-In)

9 X

10 using slice_t = si_reg_t<T, data_read_count>;

11 slice_t slice = data.template slc<data_read_count>(In);
12 source.set_slc(Out, slice);

13 return source;

Figure 12: Filling up an ac_int.

code will trigger the compiler to generate an unrolled version. Yet,
the current version of the DPC++ builds suboptimal results.

We manually unrolled the implementation for 64-bit integers for
our benchmark using 512-bit wide FPGA-SIMD registers. Neverthe-
less, the discussed conflict detection instruction is a corner case for
horizontal operations since not only do all elements within a SIMD
register contribute to a single result, but the value of all values up
to position n are relevant for finding the conflicting elements at
position n + 1. As we already showed that a horizontal addition
with its inherent data dependencies does not reach interface speed,
it comes as no surprise that the conflict detection does not perform
well on both cards, reaching a maximum of 3.12GiB/s on the Ag-
ilex, 1.75GiB/s on the Stratix 10 respectively. To sum up, while it is
generally possible to realize horizontal operations on an FPGA, the
investigated techniques do not use the currently existing hardware
and its associated compiler framework to the maximum extent.

Scalar-Integer Instructions. In some situations, considering a
register as a single value is advantageous to execute specific in-
structions, such as logical or shift operations. The AC-Types classes
provided by SYCL™ overload all relevant arithmetic and logical
operations and can, therefore, be called directly with the corre-
sponding types. Slicing is a unique feature of the AC integer and
fixed-float types. An arbitrary (compile-time constant) number (N)
of neighboring bits can be read from a start index and written to
a new N-bit integer or fixed-float type. Correspondingly, such a

type can be inserted into another type at any position. For example,
this capability enables inserting new values into partially filled
registers or overwriting them. A possible implementation for such
an insertion is shown in Figure 12. First, the number of bits to be
read is calculated from data (see lines 5-9). If fewer or precisely as
many bits are written to source as can be read from data based on
In, data_read_count is set to the number of bits to be overwritten in
source. Otherwise, data_read_count is set to the number of remain-
ing bits in data. Now that the number of bits to be read from data
is known, we define a ac_int with exactly this size (see line 10). We
then create a slice of data starting from In (line 11) and write the
corresponding bits to source, starting from bit position Out (line
12).

3.3 Comparing with RTL kernels

Writing ordinary C/C++-Code to describe an algorithm and letting
a specialized compiler framework do the heavy lifting of trans-
lating the code into a digital circuit (and fitting the design into
a given FPGA hardware) is desirable for various reasons. On the
one hand, such a workflow can drastically decrease the develop-
ment time. On the other hand, a programmer can benefit from the
existing type system and features like template-based code gen-
eration. However, the question of how well the generated result
performs compared to a hand-tuned VHDL code remains. We took
an optimized Leading-Zero-Count VHDL-code from the industry to
gain an impression and compared the throughput with our solution
from Figure 8. Through the oneAPI toolchain, we can associate a
VHDL kernel with a C function name. Consequently, we can call
a VHDL kernel from C/C++ and thus use it directly within our
framework. To assess our generic implementation, we compared it
against the optimized VHDL version. Table 1 depicts the differences
in the achieved throughput using the generic version as the base-
line. As we compare the throughput, positive differences indicate
that the VHDL version was faster than the generic variant and vice
versa for negative differences. Surprisingly, the differences between
the investigated variants of the leading zero count are negligible,
ranging from —0.551% to +1.3%. Taking into consideration that the
generic version works for any integral datatype and SIMD register
size, the results speak volumes about the potential of the setup.
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Table 1: Throughput differences of industry-strength Verilog
CLZ kernel compared to a generic oneAPI Implementation.

Vector Loop Size [bit]

128 256 512 1024 2048
Stratix 10 | + 1.3% -0.738% | -0.136% | -0.551% | -0.0092%
Agilex | +0.118% | +0.0019% | +0.019% | +0.0025% +0.0%

4 USE CASE STUDIES

With our approach, we are able to fully implement a SIMD instruc-
tion set for an FPGA in DPC++ that behaves similarly to the state-
of-the-art SIMD instruction set extensions of modern CPUs. Based
on this, any SIMD extension behavior such as Intel®’s AVX512 or
ARM Neon can now be made available on the FPGA and therefore
any existing SIMD application code can be seamlessly ported to FP-
GAs. To reduce the porting effort, SIMD abstraction libraries such
as TVL [26] should be used, as we have already envisioned in [9].
Another nice and cost-free side effect of our approach is that a
single-source SIMDified code can now be concurrently executed on
both CPU and FPGA without having to consider FPGAs in isolation
(co-processing with one single source code for an algorithm).

4.1 FilterCount

To highlight the applicability of our approach, we implemented a
SIMDified filter-count operation counting the number of values
in a given range and dispatched this operation concurrently to
the host CPU and the Agilex FPGA. Figure 13 shows the achieved
bandwidth on both the host and the FPGA with USM-allocated
data on the host [9]. The host code is executed using AVX512
and the FPGA is parameterized with a reasonable SIMD register
size. As expected, more concurrently working threads on the host
memory lead to a decreased per-thread bandwidth. However, the
simultaneously running FPGA is able to constantly achieve its peak
performance.

4.2 Binary Packing

A common technique to tackle the limitations of the memory sub-
system in database systems relies on compressing base- and even
intermediate data [1, 8]. One popular example of such compression
algorithms is Binary Packing (BP) [17, 24]. The fundamental idea
is to divide data into fixed-sized blocks, determine the maximum
amount of bits to represent every single value within the block
(1st stage), and encode all values with this bit width (2nd stage).

CPU mm Agilex

1 2 3 4 5 6 7 8

Host CPU cores, excluding FPGA
Figure 13: Co-processing bandwidth for filter-count.
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1 auto bp_compress_block_v1b512_ui32_16b(

2 uint32_t * out, uint32_t const * data

30 A

4 using T = uint32_t; constexpr size_t VLb = {512};

5 autoi =20, o=0;

6  #pragma unroll

7  for (; i < VLb; i += 32, o +=16) {

8 auto decmpr_1 = load<T, VLb>(&data[il);

9 auto decmpr_2 = load<T, VLb>(&data[i+16]);

10 auto uncompr_sl = shift_left<T, VLb>(decmpr_2, 16);

11 auto cmpr = binary_or<T, VLb>(decmpr_1, uncompr_sl);
12 store<T, VLb>(&out[o], cmpr);

13 3}

14 3}

15 auto bp_decompress_block_v1lbVLb_ui32_16b(

16 uint32_t * out, uint32_t const * data

17 ) {

18 using T = uint32_t; constexpr size_t VLb = {512};
19 auto i =0, o=0;

20 auto mask = setl1<T, VLb>(@xffff);

21  #pragma unroll

22 for (auto i = @; i < VLb; i += 16, o += 32) {

23 auto cmpr = load<T, VLb>(&datal[il);

24 auto decmpr_1 = binary_and<T, VLb>(cmpr, mask);
25 store<T, VLb>(&out[o], decmpr_1);

26 auto decmpr_2 = shift_right<T, VLb>(cmpr, 16);
27 store<T, VLb>(&out[o+16], decmpr_2);

28}

29 3}

Figure 14: Implementation of Binary Packing (Type =
uint32_t, Blocksize = 512, Effective Bitwidth = 16).

Without further encoding, this algorithm can benefit unsigned in-
teger values (without the sign bit in signed integers and floating
point types). The performance of Binary Packing mainly depends
on the data properties [7, 17]. Higher effective bit counts lead to
worse compression rates and thus decrease the positive effect on the
memory bus. However, the compression as well as decompression
rountines can be SIMDified very well, as shown in Listing 15 [7, 17].

For example, with an effective bitwidth of 16-bit, an unsigned
int data type, and a blocksize of 512 elements, the compression
algorithm consists of a sequence of loading adjacent data into two
SIMD registers (lines 3 and 4), shifting the second one by 16 to the
left (line 5), applying a binary OR on the first register and the shifted
register (line 6), and storing the result into memory (line 7). The
corresponding decompression algorithm reverses the compression
by loading a single SIMD register (line 20) and masks out the upper
16-bit of every 32-bit lane to retrieve the first chunk of uncom-
pressed data (line 21) and, consequently, shifts the loaded register
right by 16 to restore the second chunk (line 23). As the number of
bits within the base type is a multiple of the compressed bitwidth,
everything adds up correctly. If the bitwidth of the underlying type
isn’t a multiple of the compressed bitwidth, an additional step has
to be added for the situation when a carry exists.

A significant drawback of this algorithm lies in its sensitivity
to (only sparsely occurring) bit-width deviations, as a single value
within a block may contribute disproportionately to the block’s
encoded bit-width [10]. For a uniform value distribution, this char-
acteristic translates to lower compression rates for bigger block
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Figure 15: State-of-the-art Binary Packing (constant bitwidth
with 512-bit wide registers) on CPU (AVX512) and FPGA.

sizes. To minimize the SIMD load- and store operations by con-
stantly processing a complete SIMD register independent of the
effective bitwidth, the blocksize is set to the number of bits within
a SIMD register. Consequently, wider SIMD registers lead to bigger
block sizes and thus may diminish the positive effects of higher
data parallelism. A variation of Binary Packing was introduced to
address this issue, which changes the internal data format and thus
reduces the block size drastically [10]. However, in order to prop-
erly function, the adapted Binary Packing heavily relies on (fast)
SIMD-random access [10].

For our use-case study, we implemented the necessary SIMD
instructions for FPGA. We ran a benchmark with bit widths of 2
(an example for an integer denominator) and 31 (as an example
for a more complex situation). As Binary Packing is a compression
algorithm, the amount of bytes that must be read differs from the
number of bytes that must be written. To calculate the reported
throughput, we divide the amount of uncompressed data by the
required time to execute the compression or decompression. Fur-
thermore, as we treat the FPGA as a co-processing device, we placed
the data that should be read within the USM-allocated data on the
host and write the result directly to the device. All experiments were
executed with 512MiB of integer data with a constant maximum
bitwidth, i. e., if the effective bitwidth equals 2, the uncompressed
data consists of values in the range of [0, 3], for 31 bit, the range
is [0, (1 << 32) — 1]. The results are shown in Figure 15. Working
with smaller bit widths leads to an increased throughput. This is
expected since, on the one hand, the amount of data that has to be
written for the compression part and read for the decompression
part, respectively, becomes lower with a smaller effective bitwidth.
On the other hand, 2 is an integer denominator of 32, and conse-
quently, no expensive overflow handling needs to take place. While
the compression strategy on the FPGA with 2 bits outperforms its
CPU counterpart, traditional Binary Packing falls short for all other
combinations compared to the CPU. To sum up, we could show
that, in general, we can successfully port a CPU-SIMD algorithm
to FPGA with negligible effort. However, if we adopt the general
processing scheme to utilize the opportunities of FPGAs to the
maximum extent, we may benefit from optimization potential.

5 CUSTOM SIMD INSTRUCTIONS

The essence of Binary Packing as described above relies on pack-
ing a fixed-sized number of elements densely together on the bit
level. Setting specific bits in a value or a stream of bits is necessary.
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1 auto bp_fpga_compress_block32_v1b512_ui32_16b(

2 uint32_t * out, uint32_t const * data

30 A

4 using T = uint32_t; constexpr size_t VLb = {512};
auto cmpr_1 = packed_load_si<T, VLb, 31>(data);
auto cmpr_2 = packed_load_si<T, VLb, 31>(&datal[16]);
auto result_1 =

8 append_si<T, VLb, 496, @>(cmpr_1, cmpr_2);

9 store_si<T, VLb>(out, result_1);

10 auto result_2 =

11 shift_right_si<T, VLb, 16, 16, 496>(cmpr_2);

12 packed_store_si<T, VLb, 480>(&out[16], result_2);
13 3

14 auto bp_fpga_decompress_block32_v1b512_ui32_16b(

15 uint32_t * out, uint32_t const * data

16 ) {

17 using T = uint32_t; constexpr size_t VLb = {512};
18 auto cmpr_1 = load_si<T, VLb, 31>(data);

19  auto decmpr_1 = unpack_si<T, VLb, 31, @>(cmpr_1);
20 store_si<T, VLb>(out, decmpr_1);

21 auto decmpr_2_0 = unpack_si<T, VLb, 31, 496>(cmpr_1);
22 auto cmpr_2 = load_si<T, VLb>(&data[16]);

23 auto decmpr_2_1 =

24 unpack_merge_si<T, 31, 16>(decmpr_2_0, cmpr_2);
25 store_si<T, VLb>(decmpr_2_1);

26}

N oG

Figure 16: Adjusted implementation of Binary Packing (Type
= uint32_t, Blocksize = 512, Effective Bitwidth = 16) using
custom SIMD instructions.

While this is not supported directly by general-purpose CPUs like
x86-64, it is not a concern when designing a custom circuit on an
FPGA. A Flip-Flop represents a single bit and can be directly set to
1 or 0. Given this peculiarity, we can rewrite the state-of-the-art
Binary Packing as shown in Figure 21. To demonstrate the flexibil-
ity of our approach, we show a 32-element block-wise packing of
32-bit values with 31-bits per value. Thus, when packing 16 - 31 bits
together, the underlying scalar integer with a size of 512-bit has
16 bits left unused. This remainder can be filled with the lower 16
bits from the 17th data element before writing 512 bits to memory.
When processing the remaining 16 elements within the block, we
must omit the first 16 bits of the 17th element. For the decompres-
sion, the existing boundary overflow must be considered. In the
following, we will describe the used custom SIMD instructions one
by one except for load_si and store_si as they behave similarly to
the load/store instructions shown in Figure 6.

Packed Load. The packed_load_si instruction iterates over a con-
stant number of bits (VLb) of a given type (T) of data (see Figure 17).
At first (lines 3 and 4), a VLb-sized ac_int is created and initial-
ized with 0 (following the official documentation, this is highly
recommended to avoid undetermined behavior). From every value,
the least significant Bitwidth bits are sliced (line 14) and inserted
into the result ac_int (lines 14 and 15). The insertion position is
calculated by the current position of the data element multiplied by
the bandwidth, leading to densely packed values inside the ac_int.

Unpack. The reverse operation of packed_load_si is unpack_si (see
Figure 18). The function gets an ac_int with densely packed bits
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1 template<typename T, size_t VLb, size_t Bitwidth>

2 INLINE si_reg_t<T,VLb> packed_load_si(T const * memory) {
3 constexpr unsigned ElementSizeBit = sizeof (T)*CHAR_BIT;
4 static_assert(Bitwidth <= ElementSizeBit,

5 "Bitwidth > element size in bits.");

6 si_reg_t<T, VLb> result;

result.template set_val<AC_VAL_0>();

8 using ElementT = ac_int<CHAR_BIT*sizeof(T), false>;

9 using SliceT = ac_int<Bitwdith, false>;
10  #pragma unroll
11 for (
12 auto idx = @; idx < oneAPIsimd<T,VLb>::VL(); ++idx
13 )¢

14 ElementT element = memory[idx];

15 SliceT slice = element.template slc<Bitwidth>(0);
16 result.set_slc((unsigned) (idx*Bitwidth), slice);
17}

18  return result;

19 3}

Figure 17: Implementation of a packed load (packing N bits
per value into an ac_int).

as input and returns an ac_int containing the restored values. A
single ac_int can contain the packed values of multiple VLb-sized
uncompressed data, the bitwidth and starting offset of the current
relevant bits are provided as a non-type template argument. Based
on the compile-time constants, the number of fully encoded values
(lines 4-9) and the amount of partially encoded bits from an overflow
value (lines 10-14) are computed at compile time. The remainder
of the function works like a reversed packed load. For every fully
encoded value, Bitwidth bits are sliced from the input value and
inserted into a resulting VLb-sized value at the corresponding bit
position, a multiple of the element size in bits (lines 17-26). If an
overflow occurs in the packing stage, the partial bits from that value
are inserted at the corresponding position (lines 27-34), and the
result is returned. The remainder of bits within a subsequent ac_int
is merged and unpacked through unpack_merge_si (see Figure 19).
First, the number of necessary bits from the overflowing value
is calculated (line 5) and inserted into the source, containing the
unpacked values from the previous stage (lines 6-10). If source is
not filled yet, the remaining bits are set according to the regular
unpack_si with the exception that it is assumed that no carry exists
in the remainder (see lines 11-22).

Right Shift. While AC-Types support logical left- and right shifts
that, if the shift-by value is a compile-time constant, translate to
plain routing without additional logic, we implemented a special-
ized right shift that can only be applied to a specific part of the
whole ac_int to demonstrate its flexibility. The code is shown in
Figure 20. Initially, the positions of the relevant bits (sub-value) are
normalized. Suppose the sub-value starts at a position smaller than
the value it should be shifted to the right. In that case, the bits at the
position up to the difference between the ShiftValue and ReadOffset
will not contribute to the overall result. They thus can be omitted
by increasing the ReadOffset by the delta (lines 7-10). Such a change
in the ReadOffset decreases the amount of EffectiveBits (lines 11-15).
With the help of the normalized ReadOffset and the normalized
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1 template<typename T, size_t VLb,

2 unsigned Bitwidth, unsigned ReadOffset>

3 INLINE si_reg_t<T,VLb> unpack_si(si_reg_t<T,VLb> data) {
4 constexpr unsigned FullReadCount = {

5 (VLb - ReadOffset) >=

6 (Bitwdith * (VLb/(CHAR_BITxsizeof(T))))
7 ? VLb/(CHAR_BIT*sizeof (T))

8 : (VLb - ReadOffset)/Bitwidth

D

10 constexpr unsigned PartialReadBits = {

11 (VLb - ReadOffset) >=

12 (Bitwdith * (VLb/(CHAR_BIT*sizeof(T))))

13 ? @ : VLb - (FullReadCount * Bitwidth + ReadOffset)
I

15  si_reg_t result;

16 result.template set_val<AC_VAL_0>();

17 if constexpr (FullReadCount > @) {

18 #pragma unroll

19 for (auto idx = @; idx < FullReadCount; ++idx) {

20 ac_int<Bitwidth, false> element =

21 data.template

22 slc<Bitwidth>((unsigned) (idx*Bitwidth +

ReadOffset));

23 result.set_slc(

24 (unsigned) (idx*CHAR_BIT*sizeof (T)), element);

25 3}

26}

27 if constexpr (PartialReadBits > 0) {

28 ac_int<PartialReadBits, valse> element =

29 data.template

30 slc<PartialReadBits>(

31 (unsigned)FullReadCount*Bitwidth + ReadOffset);

32 result.set_slc(

33 (unsigned) (FullReadCount*CHAR_BIT*sizeof (T)),
element);

34}

35 return result;

36 }

Figure 18: Implementation of unpacking values from an
ac_int.

EffectiveBits, a corresponding slice can be used to fill the resulting
value (lines 18-22).

Evaluation

We evaluated our adjusted Binary Packing using custom SIMD in-
structions on the two given platforms (see Figure 21). Following
the findings of the state-of-the-art experiment (see Figure15), the
effective bitwidth was set to 2 bits. The introduced custom instruc-
tions not only allow us to sustain the existing data layout but also
allow us to vary the block size. As long as the block size is a multi-
ple of the size in bits of the underlying base type (32 in our case),
the algorithm can process an arbitrary number of elements. Those
smaller block sizes can dramatically increase the compression rate
for real-life data [10]. Smaller block sizes have another advantage
over bigger ones. The smaller the block, the fewer instructions per
block must be executed and, consequently, the smaller the inte-
grated circuit. This benefits the possible fiax that will increase
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1 template<typename T, size_t VLb, unsigned Bitwidth,
unsigned WriteOffset>
2 INLINE si_reg_t<T,VLb> unpack_merge_si(
3 si_reg_t<T,VLb> source, si_reg_t<T,VLb> source data
45 {
5 constexpr unsigned CarryBitsCount = {WriteOffset %
(CHAR_BIT*sizeof (T))3};
6 if constexpr (CarryBitsCount != @) {
ac_int<CarryBitsCount, false> carry_element =
8 data.template slc<CarryBitsCount>((unsigned)®);
9 source.set_slc((unsigned) (WriteOffset),
carry_element);
10}
11 constexpr unsigned ReadCount = {
12 (VLb - (WriteOffset + CarryBitsCount)) /
(CHAR_BIT*sizeof (T))
13 X
14 constexpr unsigned NormalizedWriteOffset = {WriteOffset
+ CarryBitsCount};
15 if constexpr (ReadCount > @) {
16 #pragma unroll
17 for (auto idx = @; idx < ReadCount; ++idx) {

18 ac_int<Bitwidth, false> element =
19 data.template slc<Bitwidth>((unsigned)(idx =*
Bitwidth + CarryBitsCount));

20 source.set_slc((unsigned) (idx * CHAR_BIT*xsizeof(T)
+ NormalizedWriteOffset), element);

21 3}

22}

23 return source;

24 }

Figure 19: Implementation of a combined unpack and merge
instruction on FPGA.

the overall performance. Surprisingly, the compression through-
put of 512-element blocks on both cards was on par with its 32
elements counterpart. We argue that the compression’s pipeline-
friendly (stall-free) processing scheme absorbs the adverse effects
of an increased circuit size. Until the 512 bits are entirely filled, no
store operation has to be executed (that may be a pipeline breaker
if the compiler assumes a data dependency of the store location). In
contrast, multiple stores are executed per load instruction when de-
compressing, significantly harming the overall throughput for big
blocks. Furthermore, for all remaining combinations, our implemen-
tation could reach interface speed. The presented results show that
FPGAs are an excellent match for traditional SIMD processing and
open up a whole new design space with exciting speedup potential
since it enables data parallel hardware-software co-design.

6 DPC++ BEST PRACTICES

Through our work we found several pitfalls that a C++-programmer
may stumble upon. As described above, loops are a crucial and basic
building block of nearly every instruction/algorithm. A key factor
for performant code is to have a compile-time constant amount of
iterations, which allows the compiler to unroll them properly. How-
ever, some specific algorithms like, e. g., hashing with bucket chain-
ing, require loops with dynamic iteration count (while(!found)
{...}) to recompute data placement for overflowing buckets. Such
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1 template<typename T, size_t VLb,

2 unsigned ShiftValue, unsigned ReadOffset,

3 unsigned EffectiveBits>

4 INLINE si_reg_t<T,VLb> shift_right_si(

5 si_reg_t<T,VLb> data

6){

7 constexpr unsigned NormalizedReadOffset = {

8 (ReadOffset < ShiftValue)

9 ? ReadOffset + (ShiftValue - ReadOffset) : ReadOffset

10 3

11 constexpr unsigned NormalizedEffectiveBits = {

12 (ReadOffset != NormalizedReadOffset)

13 ? EffectiveBits - (ShiftValue - ReadOffset)

14 . EffectiveBits

5 X

16 constexpr unsigned WriteOffset =

17 {NormalizedReadOffset - ShiftValue};

18 ac_int<NormalizedEffectiveBits, false> slice =

19 data.template
slc<NormalizedEffectiveBits>(NormalizedReadOffset);

20 si_reg_t result;

21  result.template set_val<AC_VAL_0>();

22 result.set_slc(WriteOffset, slice);

23 return result;

24 }

Figure 20: Implementation of a scalar-integer logical right-
shift across C type bit boundaries on FPGA.
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Figure 21: Specialized Binary Packing of data with effective
bitwidth of 2 using different block sizes on FPGA.
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algorithms should be refactored to avoid such loops as much as pos-
sible through, e. g., a fixed number of tries and dedicated overflow
buckets.

Following that, we observed that determinism is another impor-
tant factor. That is, branching or conditional access is generally
discouraged. Consider an algorithm that conditionally accesses a
value: for (..) {idx = datal[i]*3; myVal += temp[idx]1};
The access to temp is dependent on the value calculated from data,
which introduces a data dependency. This in turn leads to stalling
of the pipeline, since the computation has to be carried out prior to
the memory access. Thus, this is detrimental for the overall perfor-
mance. Also in that context, the tail latency of an implementation is
based off its longest path. That is, if an algorithm has several nested
if statements, the FPGA image will create multiple paths for all
possible combinations. Yet, the result of every shorter path has to
wait for the longest path to be finished, e. g., to meet global pipeline
timing requirements, which again means stalling the pipeline.
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As a combination of the previous two factors, determinism and
data dependencies, we saw that the explicit usage of #pragma
unroll is crucial for the compiler to understand that this is an
actually unrollable loop, whose iterations might be executed on
multiple elements in parallel. Further, the generated hardware syn-
thesis report notified us occasionally that a data dependency was
detected (and thus pipeline stalling occurs) because we accessed
adjacent array indices, even if there was actually no dependent read
or write. The usage of #pragma ivdep can help alleviate this issue,
as it tells the compiler to ignore assumed data dependencies®.

Further, issues arise when working with commonly used C++
templates, which are generally employed to reduce the size of the
code base. Heavy template usage and their eventual instantiation
for many different types can lead to the compiler using more logic
array blocks (MLAB) and thus an image that is too large to be fit
onto the FPGA. Secondly, template recursion is often used to unroll
recursive functions at compile time and, thus, avoid costly function
calls during runtime. Our development cycle showed, that in its
current state, the DPC++ compiler generates well-performing FPGA
images from compile-time constant template recursion unreliably®.

The translation process of a C++ program to the final block
design, carried out by the quartus fitter, was found to be not com-
pletely robust. Based on a random seed, the fitting process starts
to place circuits on the virtual board and tries to find the locally
optimal placement. However, there are constraints to be consid-
ered, e.g. distances between circuits, local and global timing limits,
or just plain resource utilization. Depending on the starting seed,
a fitting process may or may not succeed. In the latter case, the
process could fail after several days with the error "The fitter failed
to successfully route the design." or the execution crashes.

The very long fitting times also limit the use case scenarios for
this approach. A priori known variants can be easily compiled
for operator-at-a-time or vector-at-a-time processing styles during
system build time. However, generating an operator pipeline for
tuple-at-a-time-based processing via just-in-time compilation is,
from our point of view, simply not feasible.

Lastly, the fitting process also influences a key indicator for the
performance of the FPGA-based code: the maximum frequency
fmax- Multiple layouts of the same algorithm stemming from dif-
ferent seeds can exhibit a difference in the resulting fmax. The key
question resides if there exists a generally well-performing seed
for the fitting process or if it is at all possible to somehow predict
potential frequencies, based on the required resources or algorith-
mic properties. This effect becomes even more severe if multiple
algorithmic circuits are placed within the same image. Because the
FPGA only features a single global clock, all circuits are limited
to the lowest fmax of all used layouts. This requires the program-
mer to leverage a multistep process when synthesizing the FPGA
code: First, the estimated fiax has to be collected for all algorithms
and second, algorithms with a low deviation in their fpnax are to
be grouped together, while still adhering to the overall available
resources like MLABs or ALUTs.

5Use with care, since even actual data dependencies will be ignored as well.

®When we substituted our templated code with a manually unrolled version, i.e.,
the anticipated compiler output, we could observe a notable increase in the achieved
throughput

Pietrzyk et al.

7 RELATED WORK

Leveraging FPGAs is commonly considered as a non-trivial task,
since it traditionally involves maintaining a second code base just
for the FPGA accelerator code. However, its general potential for
empowering modern database systems has already been recog-
nized [20]. In this paper, we focus on Intel® oneAPI and its DPC++
compiler to generate FPGA-specific images for data-parallel code.
Generally, OpenCL™ is an alternative dialect to submit C-style
code to CPUs, GPUs, or FPGAs. The utilization of OpenCL™ for
FPGAs has been already investigated [16, 18, 19]. For example, [18]
achieved a 4X better performance for a specific sort-merge algo-
rithm implemented in HDL than in OpenCL™. However, we are
not aware of any work investigating OpenCL for general-purpose
data-parallel code for FPGA including the definition of a SIMD in-
struction set. We decided to use DPC++, since USM offers a shared
memory programming model that significantly improves upon the
shared virtual memory (SVM) model defined in OpenCL™ [4].

SIMD is a well-established and crucial paradigm for in-memory
database query processing, e. g., as investigated in [21]. Combining
SIMD and FPGAs is an age-old idea, which was already considered
in 1994 [5]. In their work, the authors elaborate on the differences
and similarities between SIMD-processors and FPGAs and further
propose a hybrid model called Dynamically Programmable Gate
Array (DPGAs). With the continuous advancement of hardware
capabilities, we can now investigate actual implementations of
SIMDified algorithms on FPGA hardware in our paper. Moreover,
the general idea of building a dedicated ISA on FPGAs is not entirely
new, as it has already been investiged by [3]. The authors leveraged
a Tensilica LX4 prototyping core to implement set instructions
for database operators. Our work builds upon this idea by further
investigating the application of general SIMD processing methods
and how to avoid performance pitfalls.

In FastLanes, the customizability of FPGAs is used to create
SIMD-like registers of an arbitrary size, e. g., 1024 bit in this case [2].
This work considers load/store operations as well as bitwise manip-
ulations like shifts, (X)OR, addition and set operations. While these
basic instructions are suitable to represent certain algorithms, we
consider even more complex operations to allow for the portability
of complete algorithms.

8 CONCLUSION

This paper explored the possibilities of porting a SIMD-like instruc-
tion set, inspired by modern CPUs, to FPGA boards. We leveraged
oneAPI and the modern language extension DPC++ from Intel® to
implement and synthesize our intrinsic-like draft to two contempo-
rary FPGA boards. Our microbenchmarks show, that both naive and
sophisticated methods achieve runnable FPGA code without the
necessity of using low-level HDLs, but with varying performance.
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