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ABSTRACT
In DBMSs, auxiliary index structures sitting on top of the actual
database exist in various forms to speed up query processing. They
are carefully handcrafted data structures which typically material-
ize one or multiple levels of explicit indirections (aka pointers) to
allow for a quick navigation to the data of interest. Unfortunately,
dereferencing a pointer to traverse from one level to the other is
costly as additionally to following the address, it involves two ad-
dress translations from virtual memory to physical memory under
the hood. In the worst case, such an address translation is resolved
by an index access itself, namely by a lookup into the page table, a
central hardware-accelerated index structure of the OS.

However, if the page table is anyways constantly queried, it
raises the question whether we can actively incorporate it into our
database indexes and make it work for us. Precisely, instead of
explicitly materializing indirections in form of traditional pointers,
we propose to express equivalent implicit indirections directly in
the page table wherever possible. By introducing such shortcuts,
we (a) effectively reduce the height of traversal during lookups and
(b) exploit the hardware-acceleration of lookups in the page table.

To showcase the effectiveness of this approach, we actively in-
corporate the page table into a database index, namely a resizable
hash table, which follows the concept of extendible hashing. Our
“cut short” hash table resizes as gracefully as traditional extendible
hashing, but offers lookup times comparable to a single flat hash
table. Besides evaluating the strengths of the approach, we also list
the pitfalls one has to circumvent in order to efficiently exploit the
page table in database indexes in general.

1 INTRODUCTION
Index structures are an essential component of data management
systems and ensure low latency for answering selective queries.
Despite their conceptual and implementation differences, they all
share the same basic functionality: They map a key to an area, at
which the corresponding record can be located in the database
store. To do so, many structures implement some sort of hierarchy
of inner nodes, which materialize explicit indirections that point to
a portion of the next level. These explicit indirections are typically
expressed as pointers containing virtual memory addresses.

Unfortunately, dereferencing these pointers is surprisingly costly,
as more is going on than what meets the eye. To visualize the
problem, in Figure 1a, we depict the memory perspective for an
exemplary radix-style inner node with four slots, where the first
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three slots contain pointers to leaf nodes on the next level. We can
see that by default, both the inner node as well as all leaf nodes are
represented by virtual and physical memory. The reason for this
is that when we allocate memory for our nodes (using malloc or
new), we actually allocate only virtual memory. This virtual memory
is transparently mapped to physical memory on page granularity,
whereas this mapping is materialized in the page table, the index
of the memory subsystem of the OS.

As a consequence, our exemplary data structure already contains
two levels of implicit indirections right after allocation. Additionally,
by materializing pointers to the individual leaf nodes, we introduce
a level of explicit indirections. This means that looking up a key
such as 6 (0110 in binary) already requires the resolving of three
indirections in total: One implicit indirection when accessing the
inner node, one explicit indirection when following the pointer,
and another implicit indirection when accessing the leaf.

1.1 Taking the Shortcut
This leads to the question whether we can create some sort of
shortcut to reduce the total number of indirections we have to go
through. In the end, we only want to map slots of an inner node
to nodes on the next level. To express this, one level of indirection
should be sufficient.

To achieve this, we propose to express the mapping from inner
node slots to nodes on the next level purely using implicit indi-
rections in the page table. Figure 1b shows the equivalent state
to Figure 1a following this approach. The key difference is that
instead of materializing both inner node and leaf nodes via virtual
and physical memory, we realize the inner node solely by virtual
memory and the leaf nodes solely by physical memory. Then, in-
stead of mapping inner node slots to leaf nodes via pointers, we
map portions of the virtual memory representing the leaf node slots
directly to the corresponding physical memory of the leaf nodes
using a technique called memory rewiring [16]. In total, establish-
ing this shortcut effectively eliminates two levels of indirections
in comparison with the traditional approach. Even better, this re-
solving is not only performed automatically by the OS, it is also
hardware-accelerated by the CPU.

1.2 Performance Outlook
To get an impression of how much we can gain using shortcuts, we
implemented a traditional radix-style inner node/leaf node relation-
ship as shown in Figure 1a and a corresponding shortcut variant as
shown in Figure 1b. We then compare their performance under a
sequence of random lookups while varying the number of indexed
leaf nodes of size 4KB (the size of a small memory page). Assuming
𝑛 buckets, for the traditional approach, we allocate an inner node
that can store 𝑛 pointers of 8B each. Then, we allocate 𝑛 leaf nodes
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Figure 1: Indexing three leaf nodes with a traditional pointer-based radix inner node (Figure 1a) versus a shortcut (Figure 1b).

individually and keep their addresses in the respective inner node
slots.

Figure 2 shows the results while varying 𝑛. As we can see, by-
passing indirections via a shortcut has a significant positive impact
on the lookup performance. Also, we can see that the positive effect
depends on the total size of all inner nodes: The higher the fan-out,
the more the random accesses going through the traditional variant
become a bottleneck.
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Figure 2: Effect of taking the shortcut under 107 uniformly
distributed random accesses.

1.3 Transition to Database Indexing
Having seen the positive effect of introducing shortcuts, the ques-
tion arises which applications can be enhanced by it. This question
is also bound to some of the requirements of the approach, which
we have not discussed yet.

Most importantly, as both virtual and physical memory is seg-
mented into fixed sized pages, this is the granularity at which we
can index nodes. In other words, the indexed nodes must be a multi-
ple of the page size. Therefore, we see a perfect application of page
table shortcuts in index structures that manage some sort of larger
nodes, such as buckets of a hash table. Such are used for instance in
the well-known extendible hashing [4], where a so-called directory
indexes a varying number of individual fixed size buckets. On the
one hand, this allows extendible hashing to incrementally resize

on demand with low cost. On the other hand, the traditional imple-
mentation pays a price in terms of lookup performance, as every
access now has to go through the directory.

As a consequence, we see extensible hashing as the perfect candi-
date to put our technique to the test. In Section 4, we will integrate
and showcase shortcuts in extendible hashing and evaluate how it
significantly reduces the access overhead of the directory during
lookups.

1.4 Contributions and Structure of the Paper
In summary, we make the following contributions:

(1) We present the concept of virtual memory based shortcuts
to reduce the number of indirections that must be resolved
during index traversal. We discuss how to practically cre-
ate shortcuts based on traditional inner nodes and how to
maintain them alongside.

(2) We analyze the performance of shortcuts in a set of micro-
benchmarks to understand their effectiveness in relevant
situations. Precisely, we look at (a) the performance of cre-
ating and accessing new shortcuts, (b) implications when
handling low/high fan-ins, and (c) implications for multi-
threaded applications.

(3) We integrate shortcuts into a real-world database index struc-
ture, namely a resizable main-memory hash table, which
follows the concept of extendible hashing. Therein, by ex-
pressing the directory managing the individual buckets as a
shortcut, we significantly improve the lookup performance
of the data structure while preserving its ability to resize
gracefully.

The paper is structured as follows: In Section 2, we start by dis-
cussing all necessary background information regarding virtual
and physical memory management. Then, we present how to con-
struct shortcuts from traditional inner nodes in practice and how to
update them. In Section 3, we perform a set of micro-benchmarks
to understand the behavior and the pitfalls of the method in situa-
tions that are relevant for database indexing. Based on the gained
insights, in the Section 4, we actively incorporate shortcuts into a
database indexing scheme, namely extendible hashing. Finally, in
Section 5, we discuss the related work and conclude in Section 6.
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2 SHORTCUTS IN PRACTICE
Let us first discuss the page table (Section 2.1) and how to ma-
nipulate the memory mappings expressed therein using memory
rewiring (Section 2.2) in the following. Based on that, we will de-
scribe how to construct, maintain, and use shortcuts (Section 2.3).

2.1 The Index of the OS: The Page Table
The page table sits at the core of the operating system’s virtual
memory management and is essentially a coarse-granular index,
which maps virtual memory to physical memory at the granularity
of pages. This coarse-granular index is realized as an index structure
that is also widely used in the database world, namely a radix tree.
On a 64-bit OS, this radix tree has four levels, where each level
covers 9 bits, resulting in a fan-out of 512 per level. Note that only
the least significant 48-bits of a 64-bit virtual address are actually
used for addressing. As the four levels cover only 36-bits of the
48-bits, the page table indexes physical pages of size 212B = 4KB.

The page table offers a set of very interesting properties we want
to exploit:

(1) The CPU implements a so called page walker to perform the
address translation (aka page walk) in hardware. Hence, it performs
a hardware-accelerated tree traversal.

(2) The CPU provides a hardware cache for address translations,
called the Translation Lookaside Buffer (TLB), which keeps the most
recent address translations ready for subsequent translations. Only
if the TLB does not contain the translation, a page walk is triggered.

(3) The page table is anyways constantly queried during memory
accesses. Therefore, by actively incorporating it in form of shortcuts,
we do not introduce an auxiliary level of indirection but rather
exploit an existing one.

2.2 Rewiring Memory
Interestingly, the memory mappings expressed in the page table can
be actively manipulated at runtime from user space via a technique
called memory rewiring [16]. Precisely, it is possible to create new
mappings from virtual to physical memory as well as to update
existing mappings at page granularity.

The core principle works as follows: In contrast to the traditional
situation, where the programmer gets purely in contact with virtual
memory, rewiring introduces handles to both virtual and physical
memory, where physical memory is realized as so-called main-
memory files. A main-memory file acts like a normal file, despite
that it is backed by volatile (physical) main memory instead of disk
pages. Thus, a main-memory file effectively provides a handle to
physical memory. Main-memory files can be created easily in a
main-memory filesystem such as tmpfs [20], which is mounted in
most Linux distributed by default under /dev/shm to offer a place for
shared memory objects. Using the system call mmap() it is possible
to create a virtual memory area that is mapped to such a memory-
memory file. By this, we establish a controllable mapping from
virtual to physical memory. A nice side effect of this approach is
that we can update the mapping freely at page granularity during
runtime by utilizing mmap() again. This principle has been exploited
successfully in the past to accelerate data structures [6, 13, 16],
database snapshotting [16, 19], as well as table-scans [15, 17].

2.3 Construction and Maintenance
With the background knowledge at hand, let us now see how to
practically create a new shortcut using rewiring. For the following
example, we assume there exists a traditional inner node with four
slots referencing three leaf nodes via pointers, as shown in Fig-
ure 1a. We want to construct an equivalent shortcut as visualized
in Figure 1b. Note that we can create and maintain the shortcut
redundantly to the traditional inner node, where both co-exist. In
Section 3, we will discuss why such a redundant setup is recom-
mended when using shortcuts.

Let us start our discussion by focusing on physical memory first.
In Figure 1a, we see that in the traditional variant all nodes are
composed of both virtual and physical memory. However, only the
virtual memory is accessible from user space while the physical
memory is transparently managed by the OS and not accessible by
default. This is a problem, as we want to actively map the virtual
memory representing our shortcut to the physical memory of the
leaf nodes.

To introduce mappable physical memory to user space, we main-
tain a self-managed pool of physical pages, which we represent
by a single main-memory file. This main-memory file can resize
on demand at page granularity1 to provide a flexible amount of
physical memory to our application. To create and resize such a
main-memory file, we utilize the following two system calls:
int p_pool = memfd_create("pool", 0); // create pool

ftruncate(p_pool , 4 * pagesize ); // resize to 4 pages

The call to memfd_create() creates the main-memory file and re-
turns a so-called file descriptor (p_pool), which serves as our handle
to the physical page pool in the following. To acquire more physical
pages, we call ftruncate() with the desired amount and initialize
the new pages to avoid expensive hard page faults [16] at access
time later on. Note that a physical page can also become unused. If
the unused page marks the end of the main-memory file and the
pool size is above a specified threshold, we simply shrink the file
using ftruncate(). For all unused pages that are not located at the
end of the main-memory file, we maintain a queue of offsets into
the main-memory file to locate them quickly for reuse. Additionally,
at all times, we maintain a virtual memory area starting at address
v_pool that maps linearly to the entire main-memory file, rendering
it easily accessible. Note that to enable the creation of a shortcut
referencing a set of leaf nodes, all physical memory of these leaves
must originate from this page pool, as shown in Figure 3. In the
shown example, we assume that ppage0, ppage1, and ppage3 are the
physical pages from the pool that represent our leaf nodes, while
ppage2 is currently unused.

To create a shortcut from an k-slot inner node to its leaf nodes, as
shown on the right side of Figure 3, we have to perform two steps:
(1) Reserve a consecutive virtual memory area of size k * pagesize

representing the shortcut, where each virtual page represents a
slot. (2) Replicate the indirections of the traditional inner node by
mapping each virtual page of the shortcut to the physical page of
the corresponding leaf node.

1In general, a main-memory file can grow and shrink byte-wise. However, in our
use-case, we allow it to resize only at page granularity.
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Figure 3: Creating an equivalent shortcut inner node alongside a traditional inner node. To enable shortcuts, the physical
memory of the nodes to create a shortcut to must be allocated from the page pool.

ppage2, and ppage3 in the following) is currently unused, while the
second physical page (ppage1) is in use. To create an inner node
with four slots as depicted in Figure 1b, we �rst have carry out two
steps: (1) Reserve a consecutive virtual memory area of size k *

psize for k slots. (2) Map each occupied slot to a corresponding leaf
node.

To perform step (1), we call mmap() in the following way:
LeafNode* shortcut = static_cast <LeafNode*>(

mmap(nullptr , // create a new mapping

4 * psize , // map four pages

PROT_READ | PROT_WRITE , // permissions

MAP_PRIVATE | MAP_ANON , // map to anonymous memory

-1, 0) // map to anonymous memory

);

Note that by passing the �ags MAP_PRIVATE | MAP_ANON to mmap(),
we create a virtual memory mapping that is backed by so-called
anonymous physical memory. By this, we merely reserve the area.
The start address of the newly created area is returned and bound
to LeafNode* shortcut, where sizeof(LeafNode) equals sp.

To perform step (2), we map the �rst three slots of the inner
node to the actual physical leaf nodes. As our queue of unused
pages contains only one physical page currently (ppage0), we �rst
increase the pool size two more pages via a call to:
ftruncate(pool , 4 * psize); // increase pool to 4 pages

Subsequently, we remap each slot to a leaf node respectively physi-
cal page using the following two calls to mmap():
mmap(& shortcut [0], // map the first slot ...

psize

PROT_READ | PROT_WRITE ,

MAP_SHARED | MAP_FIXED , // remap to file

pool , 0); // ... to ppage0

mmap(& shortcut [2],

psize

PROT_READ | PROT_WRITE ,

MAP_SHARED | MAP_FIXED ,

pool , offset_ppage3 );

3.3 Details
Note that when using mmap() to rewire a virtual page, the page table
entry (PTE) of that virtual page is dropped (if it exists). The next
access to that virtual page will then trigger an expensive page fault,

which adds the new PTE as a consequence. To avoid such a lazy
page table population, it is possible to pass the MAP_POPULATE �ag
to mmap(), which eagerly inserts the new PTE into the page table
during the mmap() call.

4 BEWARES AND CONSIDERATIONS
Before incorporating the page table into an actual database indexing
structure, we want to discuss and experimentally evaluation a set of
“bewares” and considerations that come with the technique. Being
aware of these properties (a) will allow us to e�ectively incorporate
the technique in our hashing scheme later on and (b) is likely to be
relevant for other works that plan to incorporate the page table as
well.

4.1 Beware #1: Factor in the Cost of Creation!
We start by analyzing the cost of creating inner nodes and subse-
quently using them. To do so, we set up a micro-benchmark that
(1) allocates a new inner node with = slots, (2) sets = indirections to
= individual leaf nodes, (3) optionally eagerly populates the page
table, (4) performs 10M random accesses on randomly selected leaf
nodes through the inner node, and (5) performs the accesses of (4)
a second time. We allocate a single wide inner node with 222 slots
in this experiment that resembles the situation of an expanded ex-
tendible hashing directory, as we will face it later, or a large number
of narrower inner nodes occurring on the same level.

In Figure 4, we compare the performance of an inner node that is
represented in the traditional way using an array of pointers versus
expressing the inner node as a shortcut node. For the shortcut node,
we evaluate both a lazy and and an eager population of the page
table. As we can see, the allocation phase (1) is basically for free
in all variants, as it is a mere reservation of a virtual memory area.
For the shortcut node, we simply allocate a private anonymous
memory area of size 222 pages using a single call to mmap() in this
step. Phase (2), where we set the indirections to the leaf nodes,
performs drastically di�erent between the traditional and shortcut
variant. While setting the pointers in the traditional variant causes
negligible cost, repeatedly calling mmap() to map each virtual page
to its physical counterpart representing a leaf is expensive and takes
on average 1.76s for 10M calls (175`s/mmap). However, please also
note that the measured situation resembles the worst case, where
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Note that to be able to create a shortcut to a set of nodes, these
nodes must be backed by physical memory allocated from the pool.
In the left part of Figure 3, we have visualized this for our running
example, where the physical memory of all leaf nodes is allocated
from the page pool. Precisely, ppage0, ppage1, and ppage3 are in use
and represent the leaves, while ppage2 is currently unused. Also, the
traditional inner node can still be allocated using a general-purpose
allocator like malloc/new, as we do not intend to create a shortcut
to inner nodes in this case.

3.2 Virtual Memory Inner Node
To create a shortcut to the leaf nodes, as visualized on the right side
of Figure 3, we have to perform two steps: (1) Reserve a consecu-
tive virtual memory area of size k * psize to represent an inner
node with k slots. (2) Construct a mapping to the leaf nodes that is
equivalent to the one of the traditional inner node.

To perform step (1), we perform a call to mmap() in the following
way to reserve a virtual memory area of four virtual pages:
LeafNode* shortcut = static_cast <LeafNode*>(

mmap(nullptr , // create a new mapping

4 * psize , // map four pages

PROT_READ | PROT_WRITE , // permissions

MAP_PRIVATE | MAP_ANON , // map to anonymous memory

-1, 0) // map to anonymous memory

);

By passing the �ags MAP_PRIVATE | MAP_ANON to mmap(), we instruct
mmap() to create a virtual memory area that is backed by so-called
anonymous physical memory. By this, we merely perform a reser-
vation of the memory area before we perform we remap individual
virtual pages to the physical memory of the pool in the next step.
The start address of the newly created area is returned and bound
to LeafNode* shortcut, where LeafNode describes the structure of a
leaf and sizeof(LeafNode) equals psize.

To replicate the indirections materialized in the traditional in-
ner node for the shortcut in step (2), we essentially perform the
following procedure for each slot: First, we retrieve the address of
the virtual memory representing the leaf node, which is stored in
the pointer of the slot. This address points into the pool
Subsequently, we remap each slot to a leaf node respectively physi-
cal page using the following two calls to mmap():

mmap(& shortcut [0], // map the first slot ...

psize

PROT_READ | PROT_WRITE ,

MAP_SHARED | MAP_FIXED , // remap to file

pool , 0); // ... to ppage0

mmap(& shortcut [2],

pagesize

PROT_READ | PROT_WRITE ,

MAP_SHARED | MAP_FIXED ,

p_pool , offset_ppage3 );

3.3 Details
Note that when using mmap() to rewire a virtual page, the page table
entry (PTE) of that virtual page is dropped (if it exists). The next
access to that virtual page will then trigger an expensive page fault,
which adds the new PTE as a consequence. To avoid such a lazy
page table population, it is possible to pass the MAP_POPULATE �ag
to mmap(), which eagerly inserts the new PTE into the page table
during the mmap() call.

4 BEWARES AND CONSIDERATIONS
Before incorporating the page table into an actual database indexing
structure, we want to discuss and experimentally evaluation a set of
“bewares” and considerations that come with the technique. Being
aware of these properties (a) will allow us to e�ectively incorporate
the technique in our hashing scheme later on and (b) is likely to be
relevant for other works that plan to incorporate the page table as
well.

4.1 Beware #1: Factor in the Cost of Creation!
We start by analyzing the cost of creating inner nodes and subse-
quently using them. To do so, we set up a micro-benchmark that
(1) allocates a new inner node with = slots, (2) sets = indirections to
= individual leaf nodes, (3) optionally eagerly populates the page
table, (4) performs 10M random accesses on randomly selected leaf
nodes through the inner node, and (5) performs the accesses of (4)
a second time. We allocate a single wide inner node with 222 slots
in this experiment that resembles the situation of an expanded ex-
tendible hashing directory, as we will face it later, or a large number
of narrower inner nodes occurring on the same level.

In Figure 4, we compare the performance of an inner node that is
represented in the traditional way using an array of pointers versus
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To perform step (1), we call mmap() and instruct it to create a
virtual memory area that is backed by anonymous physical memory
by passing the flags MAP_PRIVATE and MAP_ANON in the following way:
LeafNode* shortcut = static_cast <LeafNode*>(

mmap(nullptr , // create a new mapping

k * pagesize , // map four pages

PROT_READ | PROT_WRITE , // permissions

MAP_PRIVATE | MAP_ANON , // map to anonymous memory

-1, 0) // map to anonymous memory

);

Note that by this, we perform a mere reservation of a virtual mem-
ory area of k pages. The start address of the newly created area is re-
turned and bound to LeafNode* shortcut, where LeafNode describes
the structure of a leaf and sizeof(LeafNode) equals the pagesize.

To replicate the indirection of the i-th slot of the traditional
inner node in step (2) in our shortcut, we first have to identify the
physical page of the pointed-to leaf node. To do so, we exploit that
(a) the physical page originates from p_pool and (b) there exists
a linear mapping between v_pool and p_pool. Therefore, we first
retrieve the virtual page v_leaf of the leaf node from the pointer in
slot i. Then, we compute offset_leaf = v_leaf − v_pool to get the
offset of the virtual page in v_pool. Due to the linear mapping, this
offset also marks the beginning of the physical page of the leaf in
p_pool. Consequently, we can now map the i-th virtual page of the
shortcut representing slot i to the physical page of the leaf node at
offset_leaf using:
mmap(& shortcut[i], // update mapping at &shortcut[i]

pagesize , // map one page

PROT_READ | PROT_WRITE , // permissions

MAP_SHARED | MAP_FIXED , // update existing mapping

p_pool , offset_leaf ); // map to pool at offset_leaf

By passing &shortcut[i] as the first argument along with the flags
MAP_SHARED and MAP_FIXED, we remap the corresponding virtual
page, which is currently mapped anonymously, to the physical
page specified by the passed offset offset_leaf into p_pool. By exe-
cuting the previously described remapping procedure for every slot,
we iteratively build up our shortcut until all indirections are set. If
we are in the lucky situation to map neighboring virtual pages of
the shortcut to neighboring physical pages in the pool, we can do

so in a single mmap() call to minimize call overhead. Note that to
reflect updates, we simply execute step (2) for each updated slot.

2.4 Page Table Population
When using mmap() to map virtual memory to physical memory, the
call does not create the corresponding page table entries (PTEs) by
default, but only a so-called virtual memory area structure, which
describes the mapping. The actual PTE of each page is created lazily
when the first access to the page happens. As the lazy but costly cre-
ation of PTEs at access time can be undesired, it is possible to trigger
their eager creation at mapping time by passing the MAP_POPULATE

flag to mmap(). As we optimize for lookup performance, we therefore
utilize MAP_POPULATE to shift the cost of population to the creation
(and maintenance) phase wherever possible in the following.

3 CONSIDERATIONS
Before integrating shortcuts into an actual database index, we want
to discuss and experimentally evaluate how shortcuts behave in
certain relevant situations. This (a) will allow us to effectively use
the technique in Section 4 and (b) might be useful for other works
that plan to incorporate shortcuts.

3.1 Setup
We perform all of the following experiments on an Intel Core
i7 12700KF with 32GB of DDR5-4800 RAM. The CPU has a hy-
brid design with 8 performance cores (with hyper threading) and
4 efficiency cores, where we turn off the efficiency cores for the
experiments to avoid any influence of them on the results. The L1
TLB can cache 256 address translations for 4KB pages, whereas
the L2 TLB can cache 3072 translations. The operating system is a
vanilla 64-bit Ubuntu 22.04 (LTS).

Note that no root permissions are required to execute our code.
The only change we require over the default Ubuntu configuration
is to increase the maximum amount of allowed memory mappings.
By default, this maximum amount is set to only 216 − 1 memory
mappings, we increase it to 232 − 1. Changing this setting (globally
for the machine) requires root permissions once.
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Also, as mentioned before, to allocate physical memory for
rewiring, a tmpfs main memory filesystem must be mounted. Under
Ubuntu, this is by default the case under /dev/shm/.

3.2 Factor in the Cost of Creation!
We start by analyzing the cost of creating a shortcut and subse-
quently using it in comparison with the traditional variant. To do
so, we set up a benchmark that measures the following steps:

(1) Allocate a new inner node with 𝑛 slots. (2) Set 𝑛 indirections
to 𝑛 individual leaf nodes. For the traditional variant this means
setting the pointers, while for the shortcut variant, this means per-
forming the repetitive mmap() calls. (3) Optionally, eagerly populate
the page table for the shortcut variant (by default, a page table entry
is created lazily under the first access). (4) Perform 10M random
accesses on randomly selected leaf nodes located through the inner
node. (5) Perform the 10M accesses of (4) for a second time.

We allocate a single inner node with 𝑛 = 222 slots in this experi-
ment which resembles the situation of a wide inner node as we will
face it in our application later on, or a large number of narrower
inner nodes occurring on the same level. Table 1 shows the results
for the traditional variant and the shortcut variant (both lazy and
eager population). We show normalized times here, i.e., the time to
allocate, to set the indirections, and to populate is reported for a
single page, whereas the access time is reported for a single access.

Traditional Shortcut (lazy) Shortcut (eager)
Allocate [𝜇𝑠] 0.0 0.0 0.0

Set Indir. [𝜇𝑠] 2.1 447.5 449.4
Populate [𝜇𝑠] - - 74.1
1. Access [𝜇𝑠] 22.6 50.4 16.5
2. Access [𝜇𝑠] 23.0 18.6 16.7

Table 1: Comparing the normalized cost of creating and sub-
sequently randomly accessing a traditional inner node as
well as a shortcut with 222 slots. For the shortcut, we show
both the cost for lazy and eager page table population.

As we can see, the allocation phase (1) is basically for free, as
it is a mere reservation of virtual memory. Phase (2), where we
set the indirections to the leaf nodes, performs drastically different
between the variants. While setting the pointers in the traditional
variant causes negligible cost of only 2.1𝜇𝑠 , calling mmap() to map a
virtual page to its physical counterpart takes around 450𝜇𝑠 . This
shows the price we have to pay for being able to take shortcuts:
The initialization time is two orders of magnitude more costly,
which is something we will have to factor in when incorporating
shortcuts later on. Next, phase (3) optionally eagerly populates the
page table and must be analyzed together with phase (4) where
we perform the accesses. As we can see, populating the page table
before performing the accesses has the advantage that the first
access becomes cheaper by a factor of 3x. Finally, in phase (5), we
can see that after the first round of accesses has happened, the
second round of access performs almost equally, independent of
whether the page table has been populated eagerly or lazily.

Both observations indicate that the cost of handling shortcuts
should be hidden if possible. In Section 4, we implement this by

creating, maintaining, and eagerly populating all shortcuts asyn-
chronously with respect to all modifications to the traditional index.

3.3 Avoid TLB-Thrashing!
Next, let us analyze the impact of the fan-in, i.e., the number of slots
that index the same leaf node. While this specific situation is rather
exotic, we will face it in extendible hashing (and potentially in
other index structures) and therefore want to analyze performance
implications in advance.

To do so, we again allocate a wide inner node with 𝑛 = 222 slots.
However, this time, we vary the total number of leaf slots such that
multiple (neighboring) slots of the inner node refer to the same leaf
node. After creation, we perform 10M random lookups through the
structure and measure the total time. Figure 4 shows the results
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Figure 4: Comparing a traditional inner node and a shortcut
with 222 slots when indexing a varying amount of leaf nodes.

for the traditional variant and the shortcut variant when varying
the fan-in from 512 (indexing 213 leaf nodes) to 1 (indexing 222 leaf
nodes). First of all, we observe that for both variants the runtime
increases with the total amount of leaf nodes to index. While this
is to be expected, it is interesting to see that for fan-ins of more
than 16, the traditional variant performs better, while for lower
fan-ins, the shortcut variant is superior. This effect can be explained
by comparing the size of the virtual memory area that is accessed
in both variants for 𝑘 slots referencing 𝑚 ≤ 𝑘 leaves. In Figure 5,
we visualized this for the case of 𝑘 = 2 slots both referencing the
very same leaf node. Independent of the fan-in, the accesses on the
shortcut variant always operate on a virtual memory area of size
𝑘 pages. In contrast to that, the traditional variant operates on a
virtual memory area of only 𝑘 · 8B for the inner node plus𝑚 virtual
pages for the leaf nodes. Therefore, for higher fan-ins, the overhead
of operating on a larger virtual memory area (causing more TLB
misses and more expensive page table accesses) overshadows the
benefit of eliminating indirections.

Consequently, shortcuts should be primarily used under low
fan-ins. Further, this implies that shortcut nodes should not entirely
replace the traditional variant, but should be maintained alongside
with it. In Section 4, we follow this by maintaining both the tradi-
tional and the shortcut variant and by guiding accesses through
the best access path based on the current fan-in.
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Figure 5: Comparing a traditional and a shortcut inner node
with a fan-in of 2 in terms of the amount of virtual memory
to operate on.

3.4 Factor in TLB-Shootdowns!
When it comes to rewiring, another relevant topic are so called
TLB-shootdowns, which occur in the presence of multi-threaded
applications. If a thread is performing mmap() calls, i.e., to create
a shortcut or to update it, then all existing outdated TLB entries
must be invalidated to ensure correctness. This holds for both the
thread-local TLB as well as the TLBs of all other running cores.
Unfortunately, in contrast to data caches, TLBs do not implement a
coherency mechanism in hardware. Therefore, the OS must issue so-
called inter-processor interrupts (IPIs) to clear the outdated entries
from all thread-remote TLBs, which is rather expensive [3].

To understand the impact of TLB-shootdowns, we create the
following micro-benchmark: There exists a “shooting” thread that
performs 219 populated mmap() calls on an already mapped memory
region of size 8GB to rewire 219 randomly selected pages, causing
a large number of TLB-shootdowns. While this is happening, a
varying number of threads running on other cores are sequentially
reading the memory region repeatedly until the shooting thread
completed its task.

In Figure 6, we (a) report the time it takes the shooting thread to
remap one page as well as (b) the time it takes one of the reading
threads to read one page while the shooting thread is operating.
Additionally, as we count the total number of pages being read
during the measurement of (a) and (b), we let the reading threads
read the same amount of pages again in a separate run but this time
without a shooting thread intervening. As before, we (c) report the
time it takes one of the reading threads to read one page.

In the results we first of all see that the cost of remapping a
page (bar (a)) increases significantly with the number of concur-
rently reading threads: With seven concurrently reading threads,
the very same page remap costs 1.67× more than without any read-
ing threads operating. From the perspective of a reading thread
(bar (b)), this is not the case, i.e., the runtime of reading a page re-
mains independent from the total number of reading threads. These
observations are interesting, as they indicate that TLB shootdowns
do not affect the threads being targeted, but actually slow down
the shooting thread. When comparing bar (b) and bar (c), we also
see that only little overhead is caused by the shooting thread at all.
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Figure 6: Effect of TLB shootdowns caused by a thread per-
forming 219 mmap() calls on a varying number of reading
threads.

In summary, TLB-shootdowns slow down the thread that is
performing the rewiring. Therefore, as also identified in Section 3.2,
the cost of creating and updating the shortcut should be hidden.

4 CUTTING SHORT EXTENDIBLE HASHING
With all required background information and an awareness of the
pitfalls at hand, let us in the following actively cut short an actual
database indexing scheme. As mentioned in Section 1.3, we see
extendible hashing as a well-suited candidate for such an enhance-
ment: (a) It maintains a wide adjustable inner node. (b) It indexes
larger fixed size buckets. (c) Its main disadvantage over a static
hash table is having to go through the directory indirection.

4.1 Core Principle
Hash tables are essential index structures in databases, as they
support very low latency lookups. This holds in particular for open
addressing hashing schemes [14] which store their entries in a
single hash table T that has a certain capacity of s slots. In a textbook
implementation of open addressing, the value of a key k is simply
stored at T[h(k) mod s] if the slot is free. If it is occupied, the value
is stored at the next free slot. Therefore, if the load factor2 is low
and most key-value pairs are stored at their designated slot, open
addressing hashing schemes offer near optimal lookup times.

Unfortunately, open addressing tables have one severe down-
side: When the load factor eventually becomes too high and the
performance degrades, the entire hash table must be resized. Also,
when the load factor becomes too low and a significant amount
of memory is being wasted, a corresponding resizing step must be
carried out. A typical strategy for resizing is to allocate a new table
of twice respectively half the size and to move all entries over to
the new table. This involves the rehashing of each and every key
to determine its new designated slot. As this puts massive pressure
on the operation that triggers the resizing, systems implement cre-
ative workarounds to handle the problem. For instance, the popular
key-value store Redis [2] does not rehash all entries in one go but

2The load factor is the number of occupied slots divided by the total number of slots.
6



Taking the Shortcut: Actively Incorporating the Virtual Memory Index of the OS to Hardware-Accelerate Database Indexing CIDR ’24, January 14–17, 2024, Chaminade, USA

moves for every happening access only a small portion of entries to
the new hash table [1]. The downside of this is that as long as not
all entries have been moved, both hash tables must be kept alive
and potentially queried at lookup time.

Another strategy to tackle the resizing problematic is to use a
hashing scheme that supports overflow buckets, such as chained
hashing [14]. Therein, overflow buckets are created and linked
to the main table in which the entries are placed. Under deletes,
overflow buckets can get freed again. While this strategy indeed
gracefully resizes the index, it unfortunately eliminates the major
selling point of hash tables, namely fast lookups, as chains over
overflow buckets must be traversed.

Extendible hashing [4] solves the resizing problem in a much
more elegant way. Instead of using a single static hash table, ex-
tendible hashing keeps a varying number of smaller fixed size tables,
called buckets, that are indexed via an inner node, called directory.
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Figure 7: Dynamically resizing a hash table using extendible
hashing [4].

Figure 7 shows its basic principle. Assuming that a hash consists
of four bits, in Figure 7a, we start with two buckets where the left
one contains only entries whose hashes have the form 0xxx, whereas
the right one contains only entries whose hashes look like 1xxx.
Thus, the local depth of each bucket is 1, as only one bit of the hash
determines to which bucket each entry belongs. Correspondingly,
the global depth of the directory with two slots is 1. Let us now
assume that the right bucket overflows. To handle the overflow, the
bucket must be split and the entries must be moved and rehashed
to two new buckets storing entries whose hashes look like 10xx

and 11xx. Figure 7b shows the result of this split. Consequently, the
local depth of these two new buckets is now 2, as two bits of the
hash are considered. The directory must be doubled too in order
to index the new buckets, which increases the global depth to 2.
The adaptiveness of the approach becomes visible at the untouched
bucket 0xxx. Due to the doubling of the directory, this bucket is now
referenced by two directory slots, as the global depth is larger than
the local depth of bucket 0xxx. Also note that a split of bucket 0xxx
would now not double the directory, as enough slots are available
to reference the two resulting buckets.

Overall, extendible hashing nicely avoids the peak cost of resizing
a single large hash table in one go by adding/removing smaller hash
tables at a lower individual cost and on demand. This is bought by
the introduction of the directory, through which every access has
to go.

4.2 Architecture and Implementation
To eliminate the major weakness of extendible hashing, in the
following, we will cut the directory short while keeping its adap-
tiveness intact. Based on the lessons learned in Section 3, we de-
sign our Shortcut-EH method as follows: To hide the cost of cre-
ation and maintenance (Section 3.2) and to reduce the slowdown
caused by TLB-Shootdowns (Section 3.4), the shortcut directory
should not replace the traditional directory entirely, but must ac-
company it. While all directory-modifying operations are reflected
synchronously by the traditional directory, the shortcut directory
replays these operations asynchronously. When the shortcut di-
rectory is in sync with the traditional directory, it is considered
for accesses as a faster alternative. As a side-effect of this design,
we can freely switch between traditional and shortcut directory
for routing accesses, where we base the decision on the current
average fan-in (Section 3.3).

We trigger and coordinate the asynchronous maintenance of the
shortcut directory via a concurrent lock-free FIFO queue from the
Boost library. This queue receives maintenance requests from the
main thread as soon as modifications on the traditional directory
happen. These modifications can be of two types:

(1) Splitting a bucket. In this case, two slots of the traditional di-
rectory are updated to index two new buckets after a split and
two remappings must happen in the corresponding shortcut
directory. To do so, the main thread will push two update
requests into the queue when a bucket reorganization hap-
pens, each containing the slot to update as well as the file
offset to map the slot to.

(2) Doubling the traditional directory. In this case, the existing
shortcut directory is destroyed and a new shortcut directory
is created from scratch3. To trigger this, the main thread puts
a create request on the queue containing the number of slots
of the new directory as well as an array of file offsets to map
the slots to.

Note that before the main thread pushes a create request into
the queue, it pops all potentially pending update requests as they
became outdated. A separate mapper thread constantly polls the
concurrent queue at a fixed frequency for requests, where we em-
pirically determined 25ms to work well in practice. If a request is
pending, it executes it to update respectively replace the current
shortcut directory. The execution of the requests is always followed
by a corresponding page table population to ensure that all page
table entries exist before any accesses happen.

As mentioned, we can use an existing shortcut directory only, if it
is in sync with the traditional directory. To detect synchronicity, we
maintain for both the traditional as well as the shortcut directory a

3We are aware of the system call mremap() to shrink or grow virtual memory areas,
which seems like a perfect candidate for resizing directory – unfortunately, mremap()
seems to behave incorrectly when resizing mappings to main memory files, so we
avoid using it in our current implementation.
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version number, where every modification to a directory increments
the respective version. As during reorganizing of the shortcut direc-
tory we might skip versions (since a create request cancels pending
update requests), the main thread passes the version number after
changing the traditional directory with the modification request.
This included version number then becomes the version of the
shortcut directory after the modification has been carried out. We
update the version number of the shortcut directory only after the
population of the page table has been performed to assure that no
access on the shortcut directory suffers from an expensive page
fault. Note that even if the shortcut directory is in sync, we might
not use it for every access due to the danger of TLB-thrashing. To
make a decision, we keep the the current average fan-in of the
directory and base our decision on that: If the average fan-in is ≤ 8,
we route the access through the shortcut, otherwise, we use the
traditional directory.

4.3 Experimental Evaluation
Let us now see how Shortcut-EH as presented in Section 4.2 com-
pares against the following baselines:

Hash Table (HT) : This variant resembles a single flat open-
addressing hash table with𝑛 slots that is accessed via linear probing.
If the load factor exceed a specified maximum load factor 𝑙𝑚𝑎𝑥 dur-
ing an insertion, a new hash table of size 2𝑛 is allocated, all entries
are moved over from the old hash table, the insert is performed,
and the old table is freed. Similarly, if the hash table underflows
with respect to a specified 𝑙𝑚𝑖𝑛 , the data is migrated to a new hash
table of half the size 𝑛/2.

Hash Table Incremental (HTI): This variant, as implemented by
the popular key-value store Redis [1], resembles HT in all aspects
except of the way entry migration is handled: Instead of moving
all entries over to the new hash table in one go, only a batch 𝑏 ≤ 𝑛
of entries is actually moved. Subsequent accesses then also move
𝑏 existing entries until all entries have been migrated. As long as
both tables co-exist, inserts happen solely on the new table. Deletes
and lookups have to potentially inspect both tables to locate an
entry respectively be sure that it does not exist. As an optimization,
we inspect the table that contains more entries first. As soon as the
old table becomes empty, it can be deleted and the behavior of HTI
resembles the one of HT again.

Chained Hashing (CH): This variant uses a fixed size hash table
with 𝑛 slots, where a slot either contains an entry or a pointer to a
bucket (or no entry to all). A fixed-size bucket of size 𝑘 is created to
handle the situation where multiple entries hash to the same slot in
the table. To stay close to the other methods, within each bucket we
use open addressing/linear probing to organize the entries. When
a bucket overflows, i.e., its load factor exceed the threshold 𝑙𝑚𝑎𝑥 , it
creates a new bucket, links to it, and inserts the entry there. These
bucket chains are searched one after the other in order to locate an
entry or to be sure that is does not exist in the table.

Extendible Hashing (EH) resembles a classical extendible hash-
ing scheme, which uses a pointer-based directory. The directory
is indexed using the most significant bits of the key. Within each
bucket, we again use open addressing/linear probing.

To ensure comparability, all methods utilize the same lightweight
multiplicative hash function internally and a bucket size of 4KB.
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Figure 8: Insertion and lookup performance of different hash
tables.

In Figure 8a, we start by inserting 100M entries into each index
and report the accumulated insertion time. HT, HTI, EH, and
Shortcut-EH all start with an effective space of only 4KB and
resize at a load factor of 0.35. As CH does not adjust its hash table
size, it is allowed to start with a hash table size of 1GB and links
buckets of size 128B. From the results we can see that both EH and
Shortcut-EH indeed gracefully distribute the insertion cost over
the sequence. This is clearly not the case for HT which shows a
staircase shape due to the occasional doubling of the entire hash
table. HTI reduces this problem by prolonging the rehashing step
at the cost of keeping two hash tables side by side for a longer
period of time. Unsurprisingly, CH shows the best insertion time,
as it does not perform any rehashing at all. Most importantly for
us, we can see that the overhead caused by the maintenance of the
shortcut in Shortcut-EH is only around 8% over EH.

Next, in Figure 8b, we perform 100M random lookups (only hits)
on the previously filled indexes. Note that for Shortcut-EH, the
shortcut is in sync with the traditional directory and hence used
for all lookups. Consequently, Shortcut-EH performs significantly
better than EH, reducing its major limitation. Also, while HT offers
the fastest lookups, it is closely followed by Shortcut-EH. The small
overhead is caused by having to compute two hashes (directory
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slot and bucket slot) instead of only one hash per lookup as well as
by having to test for whether the directories are in sync. CH and
in particular HTI pay a price for having to traverse bucket lists
respectively accessing two hash tables to locate the entry.

Finally, in Figure 9, let us inspect the behavior of Shortcut-EH
in comparison with EH in more detail under a mixed workload
containing both insertions and lookups. In particular, we are in-
terested in the synchronization of the shortcut with its traditional
counterpart and its effect on the lookup performance. To do so,
upfront, we first bulk-load both indexes with 92M entries. Then,
we fire four waves of 2M accesses each, where the first 1% accesses
are insertions and the remaining 99% accesses are lookups, resem-
bling a read-heavy workload. We plot the lookup time for every
10.000 accesses. Along, we show the current version number of
both directories to see when and for how long they are out of sync.
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Figure 9: Synchronization under a mixed workload.

We can see that the insertions happening at the beginning of each
wave trigger bucket splits and cause the shortcut directory to go
out of sync. This penalizes the lookup time of Shortcut-EH, as the
lookups must be answered by the traditional directory concurrently
to the synchronization. However, shortly after the insertion burst
ends, the shortcut directory catches up and the lookup time of
Shortcut-EH clearly falls below the one of EH again.

5 RELATED WORK
Apart from this work, memory rewiring has been exploited suc-
cessfully in other contexts as well. In the original paper [16] where
we introduced the technique, we utilize it to enhance a data struc-
ture, namely a resizing array aka vector by avoiding expensive
physical copying during the resizing steps. In the context of data
structures, rewiring has also been used to accelerate packed mem-
ory arrays [13], i.e., sparsely populated arrays that are optimized
for insertions. Therein, rewiring avoids physical copying in the
re-balancing step, which is required if the sparsity is not balanced
anymore after a burst of insertions.

Apart from data structures, rewiring has been applied to enhance
algorithms as well. For example, in [16], we improved out-of-place
partitioning using the technique: Instead of building a histogram to
identify the partition sizes, we move the data to partition into over-
allocated partitions which are then virtually stitched together using

rewiring. In [16] and [19], we also used the technique to implement
virtual snapshotting: Instead of relying on the system call fork(),
as done previously by the HyPer system [9], rewiring allows to
create fine-granular snapshots of only parts of the database. At the
same time, virtual snapshots can be created entirely in user-space.

In the context of indexing, rewiring has been utilized to speed up
adaptive indexing aka database cracking [8, 18], again to prevent
physical copying operations when performing some sort of out-
of-place data reorganization. In [15, 17], we further used rewiring
to realize a coarse-granular index. Precisely, we create partial vir-
tual views of physical columns having specific properties, such as
covering a certain value range. By routing table scans only to rele-
vant virtual views, it is possible to skip irrelevant portions of the
column without introducing an explicit indirection. Another work
that applies rewiring for indexing is [5], in which the adaptive radix
tree (ART) [12] is extended by very wide (virtual) nodes, which are
mapped to a smaller number of physical nodes using rewiring if
possible. This keeps the memory footprint of these wide nodes low
if they are sparsely populated.

Apart from rewiring, other techniques have previously exploited
the virtual memory system. For example, the index structure KISS-
tree [10] over-allocates its root node and extensively exploits that
the operating system allocates the backing physical memory lazily
and only if required. In the context of buffer management, memory
mapping files have been used to replace an explicit buffer manage-
ment altogether, however, with questionable success [3]. In [11],
virtual memory was successfully utilized to enhance explicit buffer
management.

Our main use-case extendible hashing [4] has been explored in
different variants over the years as well. Apart from the single-
directory version accelerated in this work, extendible hashing has
also been proposed in a multi-directory variant [7, 21]. Therein,
each directory has a maximal global depth to which it can expand. If
this global depth is reached, a directory on the next level is opened.
This variant is able to handle skewed datasets better than the single-
directory variant - at the cost of introducing more indirections.

6 FUTURE WORK & CONCLUSION
In this paper we introduced virtual memory shortcuts to reduce
the number of explicit indirections within index structures. We
presented the technical aspects of the method and critically ana-
lyzed its behavior during creation, varying fan-ins, and concurrent
modification experimentally. Based on these insights, we exem-
plarily integrated shortcuts into an actual database index, namely
extendible hashing, and showed that the technique eliminates the
major downside of the hashing scheme: the overhead caused by
the directory. This narrowed the performance gap to single table
hashing while preserving its advantage of adaptive and incremental
resizing. Apart from traditional extendible hashing, we see potential
for other index structures to be accelerated via shortcuts as well:
For example, multi-level extendible hashing, where multiple levels
of directories are used, or radix trees in general could potentially
enhanced by the technique in future work.

Code and artifacts of this project are available under:
https://gitlab.rlp.net/fschuhkn/taking-the-shortcut
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