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ABSTRACT
Before applying data analytics or machine learning to a data set,
a vital step is usually the construction of an informative set of
features from the data. In this paper, we present SMARTFEAT, an
efficient automated feature engineering tool to assist data users,
even non-experts, in constructing useful features. Leveraging the
power of Foundation Models (FMs), our approach enables the cre-
ation of new features from the data, based on contextual infor-
mation and open-world knowledge. Our method incorporates an
intelligent operator selector that discerns a subset of operators, ef-
fectively avoiding exhaustive combinations of original features, as
is typically observed in traditional automated feature engineering
tools. Moreover, we address the limitations of performing data tasks
through row-level interactions with FMs, which could lead to sig-
nificant delays and costs due to excessive API calls. We introduce a
function generator that facilitates the acquisition of efficient data
transformations, such as dataframe built-in methods or lambda
functions, ensuring the applicability of SMARTFEAT to generate
new features for large datasets. Code repo with prompt details and
datasets: (https://github.com/niceIrene/SMARTFEAT).

1 INTRODUCTION
Machine learning (ML) plays a crucial role in myriad decision-
making processes, ranging from automated policing [23] to medical
diagnosis [14] and pricing plan development[5]. Raw data collected
through data integration is seldom suitable for direct use for such
machine learning (or any other data analytics): there is typically
a need for appropriate data wrangling to construct high-quality
features. This process is highly dependent on domain expertise and
requires considerable manual effort by data scientists.

To mitigate manual labor, automated approaches have been de-
veloped as surveyed in [27]. However, traditional automatic feature
engineering (AFE) methods typically rely on a predefined set of
operators (e.g. scaling a single column, adding two columns), ap-
plied directly to the original dataset for generating new features
[11]. Unfortunately, many of the features generated using these
methods lack meaningful information and require significant effort
for high-quality feature selection [27]. The limited flexibility in
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Figure 1: Comparison of row-level interactions to feature-level
interactions.

choosing appropriate operators and the inability to capture domain-
specific information effectively has led researchers to explore new
approaches that can leverage contextual information to enhance
feature generation and selection. Foundation models, as we discuss
next, are a natural choice for this purpose.

Recently, the emergence of foundation models (FMs) such as
BERT [6], PaLM [4], and GPT [3] has brought significant advance-
ments in many applications. These models, trained on extensive
web-crawled data across diverse tasks, offer the unique capability
of adaptation to new tasks without necessitating task-specific fine-
tuning [3]. Consequently, data scientists have been exploring the
potential of FMs in handling crucial data-related tasks, including
data imputation (DI), error detection (ED), and entity matching
(EM), demonstrating SoTA performance [19].

Incorporating FMs, designed to process natural language input
and generate corresponding natural language output, into tasks of
data manipulation is challenging. The prevailing strategy involves
serializing and tokenizing each entry in the dataset and using FMs
to predict the masked tokens, leveraging their ability to predict the
next words as depicted in Figure 1. However, conducting row-level
completions for large datasets can become impractical due to the
time and financial costs associated with excessive interactions with
FMs, hindering efficient and scalable applications.

In this paper, we seek to overcome this obstacle and improve the
efficiency of integrating FMs into data tasks. Specifically, we explore
performing feature-level interactionswith FMs, aiming to transform
the natural language output of FMs into executable functions that
can be applied to construct new features. We demonstrate our idea
using the following example.

Example 1.1. Consider an insurance company that aims to deter-
mine the insurance rate for each customer based on the probability

https://github.com/niceIrene/SMARTFEAT
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Table 1: Example data set (Prediction class: Safe 1=yes, 0=no).

Sex Age Age
of car Make, Model Claim in

last 6 month City Safe

M 21 6 Honda, Civic 1 SF 0
F 35 2 Toyota, Corolla 0 LA 1
M 42 8 Ford, Mustang 0 SEA 1
F 22 14 Chevrolet, Cruze 1 SF 0
M 45 3 BMW, X5 0 SEA 1
F 56 5 Volkswagen, Golf 0 LA 1

of them filing a new insurance claim within the next 6 months. The
dataset in Table 1 includes information such as policyholder demo-
graphics, car details, location, and historical insurance records. The
prediction class "safe" indicates whether a policyholder is considered
safe and less likely to file an insurance claim within the next 6 months.

To enhance prediction performance, we present SMARTFEAT,
a practical AFE tool that leverages FMs to predict suitable trans-
formations based on contextual information. SMARTFEAT’s new
features for the example may include:
(𝐹1) Bucketized Age: Groups individuals’ ages into predefined bins
using a bucketization function.
(𝐹2)Manufacturing Year of the Car: Computes the difference between
the car’s age and the current year.
(𝐹3) Claim Probability per Car Model: Provides the historical claim
probability for each car model by grouping the data accordingly and
calculating the average of ‘Claim in last 6 months’.
(𝐹4) City Population Density: Extracts population density informa-
tion from the city feature.
In comparison with traditional AFE tools, SMARTFEAT offers sev-
eral compelling advantages:

• Broader coverage of operators. SMARTFEAT supports an ex-
tensive range of operators, surpassing machine learning-based
recommendations [20], and pre-defined operators [10, 11]. The
operator-guided prompt templates in SMARTFEAT enable consid-
eration of an extensive set of candidate features. Moreover, lever-
aging encoded knowledge [19] from FMs enables the generation
of diverse transformations, such as get_dummies, split, and
user-defined functions. For instance, constructing the bucketiza-
tion feature (𝐹1) with user-defined boundaries can incorporate
practical thresholds observed in real-world insurance quotes, like
the frequently used threshold of 21 years old.

• Better explainability and efficiency. SMARTFEAT leverages
contextual information within the dataset for feature generation.
Given descriptions of the current feature set, SMARTFEAT effi-
ciently interacts with FMs using both “proposal” and “sampling”
strategies [26] to generate candidate features. Unlike traditional
AFE tools that disregard contextual information and may gener-
ate numerous non-meaningful features, SMARTFEAT selectively
considers relevant operators. For example, in the construction of
feature (𝐹2), SMARTFEAT exclusively considers the subtraction
operator, discarding other binary operators.

• Ability to generate highly correlated features. By provid-
ing prompts that specify the prediction class and downstream
ML model, SMARTFEAT tends to generate features that exhibit
a notable correlation with the prediction class and are appro-
priate for downstream ML models. For instance, the creation

of the 𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝑇ℎ𝑒𝑛𝐴𝑣𝑔 feature (𝐹3) illustrates the claim his-
tory of each car model, demonstrating a noteworthy correlation
with the "Safe" attribute. Moreover, certain models like k-nearest-
neighbors (KNN) tend to perform better when the data is nor-
malized or has similar ranges [22].

• Ability to access external data and resources. SMARTFEAT
can leverage external knowledgewithout explicitly incorporating
external sources, as demonstrated in the construction of feature
𝐹4. Although FMs may have limitations on accessing real-time
data, they can provide potential sources and APIs for users to
utilize, as further demonstrated in Section 3.3.
In sum, this work makes the following contributions. Firstly, we

present an AFE tool that integrates FMs, enhancing the effective-
ness of feature engineering. By leveraging contextual information
and open-world knowledge, SMARTFEAT generates a diverse set
of relevant features for downstream prediction tasks. Additionally,
our approach enables feature-level interactions with FMs and de-
rives values of new features through the generated transformation
functions, empowering SMARTFEAT to handle large datasets.

2 BACKGROUND AND RELATEDWORK
Foundation models for data wrangling. Pre-trained language mod-

els, also known as foundation models, such as BERT [6], RoBERTa
[18], GPT-3 [3], and ChatGPT, are neural networks trained on large
corpora of text data encompassing various tasks. FMs learn the se-
mantics of natural language by predicting the probability of masked
words during pre-training and generate text based on the log proba-
bility during inference. Typically, FMs consist of billions of parame-
ters and can be applied to a wide range of tasks through fine-tuning
or few-shot prompting. Researchers have recently explored the
potential of applying FMs in data management. Narayan et al. [19]
propose cast data tasks including entity matching (EM), error detec-
tion (ED), and data imputation (DI) as prompting tasks to explore
FMs’ ability to perform classical data wrangling. DITTO [17] formu-
lates EM as sequence-pair classification, utilizing transformer-based
foundation models for enhanced language understanding. RPT [24]
investigates pre-trained transformers for data preparation, includ-
ing EM, DI, and ED. Retclean [2] addresses limitations in handling
model errors, unseen datasets, and users’ private data for ED and
DI tasks. Usually, in the context of these works, FMs are integrated
into the data management processes by serializing data entries and
predicting masked tokens.

Automated feature engineering. A data processing workflow for
machine learning or data analytics typically includes critical steps:
data acquisition, integration [21], cleaning [1], feature engineering
[27], and machine learning training. Our focus lies specifically on
the feature engineering step 1. In this context, automated feature
engineering (AFE) tools play a vital role in assisting non-experts in
constructing high-quality features from raw input data. AFE often
employs data transformations to generate new features, thereby
enhancing the performance of machine learning predictions. Vari-
ous approaches, such as DSM [10] and OneBM [15] integrate mul-
tiple relations by enumerating potential transformations, while
ExploreKit [11] generates new features using pre-defined operators.
1We concentrate on the single table scenario, as table joins are typically part of the
integration step.
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However, these methods, often referred to as expansion-selection
methods, tend to create non-meaningful features and require exten-
sive feature selection efforts as the number of generated features is
unbounded [13]. Other approaches, like Cognito [13] based on tree-
like exploration andAutoFEAT [9] based on iterative search, address
some limitations but have low search efficiency. Learning-based
methods, such as TransGraph [12] based on Q-learning and LFE
[20] based on MLPs, have also been explored. FeSTE [7] proposes
using external sources like Wikipedia to enhance classification ac-
curacy but relies on entity matching and may not be applicable to
all datasets. The most relevant work to SMARTFEAT is CAAFE
[8], which also leverages FMs to create and validate new feature
selections. However, our approach differs from CAAFE in that we
define an operator-based search space for generating new features,
as opposed to employing an interactive Chain-of-Thoughts [25]
methodology.

3 PROPOSED METHOD
Given a dataset D consisting of instances I with original feature
setA = {𝐴1, 𝐴2, · · · , 𝐴𝑛} and a classification attributeY, such that
D𝑥 = I × A and D𝑦 = Y. Our primary objective is to identify
a set of suitable operators 𝑂𝑝 = {𝑂𝑝1, · · · ,𝑂𝑝𝑚} and their corre-
sponding transformation functions F = {𝑓1, · · · , 𝑓𝑚}. By applying
each transformation function toD, we can obtain a set of candidate
new features {𝐴𝑐𝑎𝑛𝑑

1 , · · · , 𝐴𝑐𝑎𝑛𝑑
𝑚 } for all 𝑓𝑖 ∈ F .

3.1 Overview
The feature generation process of SMARTFEAT is similar to other
AFE tools [10, 11, 13] that utilize a search process to iteratively
create new features and incrementally enhance the existing feature
set. These newly generated features are subsequently taken into
consideration for the ongoing generation of additional features.

Figure 1 illustrates, in each iteration, the process bywhich SMART-
FEAT searches for and generates each new feature, employing two
core components: the operator selector and the function generator,
both supported by foundation models (FMs).

The input to SMARTFEAT comprises three elements: (1) dataset
feature description, (2) prediction class, and (3) downstream classi-
fication model. The dataset feature description typically contains a
belief description of the feature content, data type, and potentially
the data domain of categorical features. This information can often
be found in the data card of each open-source dataset, such as those
available on platforms like Kaggle. We assume that, in most cases,
the feature names are descriptive and this information is accessible
or can be user-generated. We will also explore SMARTFEAT’s per-
formance with minimal input, consisting only of the feature names
in Section 4.

The prediction class indicates the target variable that the down-
stream model aims to predict. Lastly, we specify the classification
model used downstream. While our discussion mainly focuses on
the downstream task of binary classification, our model can adapt
to constructing features for other downstream applications with
minor adjustments to the prompts.

The operator selector ( 1○) chooses suitable operators and gener-
ates the descriptions for new features. It encodes a set of prompt
templates corresponding to the operators considered for generating

“Dataset description: {data_agenda},
ML model: {Decision Tree}
Consider the unary operators on 
“Age” to obtain helpful features to  
predict {Safe} …”

“Generate the optimal Python 
function to obtain new feature 
{Bucketized_age} (output) using 
feature {Age} (input). Description: 
{Bucketization of Age attribute}

Operator Selector Function Generator

Dataset

Sex Age …

…
df.apply(lambda row: 

bucketize_age(row[‘Age’]), axis = 1)

def bucketize_age(Age):

     if Age > 21:

return 1

     else:

return 0

Apply function

“Bucketized_age: Bucketization of Age 
attribute” updated to data_agenda.

Figure 2: Illustrative example: constructing Bucketized Age.

new features. Given the input, the operator selector uses the prompt
for the current operator to interact with the FMmodel. It selects the
appropriate operators and provides the (i) name of the new feature,
the (ii) relevant columns to compute the new feature, and the (iii)
new feature description. These three outputs serve as input for the
function generator to generate the transformation function.

The function generator ( 2○) seeks to obtain the optimal trans-
formation function or provide necessary information, such as data
sources, by interacting with an FM model. SMARTFEAT utilizes the
state-of-the-art FM interaction toolkit, LangChain2, to parse the
output and then automatically applies the transformation function
to the dataset. Once the new feature is successfully generated, both
the feature name and its description (generated by the operator
selector) are included in the dataset feature description and used to
generate additional features in the next iteration.

Consider the example in Figure 2. The current operator being
explored by the operator selector is a unary operator. Interacting
with its FM model, the operator selector generates the output, in-
cluding a feature name (Bucketized_age), a feature description,
and the relevant column(s). The function generator then uses this
output to obtain an executable function, applies it to the original
dataset, and updates the data agenda. We next delve into the details
of the two components in Section 3.2 and Section 3.3, respectively.

3.2 Operator-guided feature generation
The goal of this component is to efficiently generate candidate fea-
tures without exhaustively enumerating all potential combinations.
In this subsection, we first discuss a set of operators used to guide
the generation of new features. Then, we explain how we prompt
the FM and generate the candidate feature set.

Operator types. We consider four types of operators for generat-
ing candidate features: unary, binary, high-order, and extractor. For
each operator, we use a prompt template to interact with the FM.

Unary operators encompass normalization, bucketization, and
a set of unary operations such as getting dummies and date splitting.
The operator selector does not determine the specific transforma-
tion function to be selected, for example, whether to use min-max
scaling or standardization for normalization, or what bucket bound-
aries to set for the bucketization. The focus is solely on assessing the
types of unary operations that are beneficial, leaving the function
selection to the second phase.

2https://www.langchain.com/

https://www.langchain.com/
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Table 2: Example of prompt templates and outputs for operator selector.

Strategy Operator Prompt template FM output

Proposal Unary

“ · · · Consider the unary operators on the attribute {org_attr} that can
generate helpful features to predict {y_attr}.
List all possible appropriate operators, and your confidence levels
(certain/high/medium/low) · · · ”

𝑂𝑝1 ((certain/high/...): desc. 1
𝑂𝑝2 ((certain/high/...): desc. 2
· · ·

Sampling High-order
“ · · · Generate a groupby feature for predicting {y_attr} by applying
‘df.groupby(groupby_col)[agg_col].transform(function)’.
Specify the groupby_col, agg_col, and the aggregation function.”

{groupby_col: [cols] , agg_col: col,
function: mean/max/ · · · }

Binary operators include four basic arithmetic operations:
+,−,×,÷. We leave the more complex combinations of two original
features to extractor operators.

High-order operators, wherewe consider the𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝑇ℎ𝑒𝑛𝐴𝑔𝑔
operation. We consider original features that are capable of cate-
gorizing data into distinct subsets as valid candidates for 𝐺𝑟𝑜𝑢𝑝𝑏𝑦
columns and features containing numerical information that can
be aggregated as valid aggregate columns. The aggregate functions
include mean, max, average, and others, and we allow the FM to
choose the optimal function.

Extractors extract information that cannot be obtained from
the previous operators. They handle more complex transformations
and feature extractions, such as computing an index as a weighted
combination of several features. Additionally, they can leverage
library functions and assist in extracting information from external
sources, such as obtaining the population density for each city in
the motivating example.

Prompting FM for operator selection. As discussed in Section 3.1,
the operator selector contains a set of prompt templates for each
type of operator. Based on the characteristics of different operators,
we employ two prompting strategies in our search for new features:
the proposal strategy and the sampling strategy [26], which are
encoded into the prompt templates of the operators.

In the proposal strategy, the FM is prompted to propose all po-
tential candidates for𝑂𝑝 . The candidates are drawn from FM’s out-
put by [𝑂𝑝 (1) , · · · ,𝑂𝑝 (𝑖 ) ] ∼ 𝑝propose (𝑂𝑝 (1,· · · ,𝑖 ) |𝑧descr, 𝑧y, 𝑧model).
From these proposals 𝑂𝑝 (1,· · · ,𝑖 ) , SMARTFEAT selects the most
probable options, generating descriptive details, relevant columns,
and a feature name. This strategy is more effective when dealing
with relatively smaller search spaces because the time for search-
ing is limited, and it also avoids duplication. For instance, when
exploring the unary operators, we can apply the proposal prompt-
ing strategy to each original feature to propose potential unary
operators that can be applied to the feature.

Table 2 presents the prompt template and the FM output for
the unary operator. Based on the FM output, SMARTFEAT then
selects the operators with certain or high confidence to generate
new features. SMARTFEAT parses the output to obtain the new
feature name as “OpName_OrgAttr”, the feature description as the
operator description, and the relevant columns as the [OrgAttr].

In the sampling strategy, the FM is prompted to provide one
candidate operator at a time, i.i.d. sampled from a Chain of Thought,
i.e., 𝑂𝑝 (𝑖 ) ∼ 𝑝sample (𝑂𝑝 | (𝑧descr, 𝑧y, 𝑧model). The sampling method
works better when the generation space is rich. For instance, for

high-order operators, the selection of 𝐺𝑟𝑜𝑢𝑝𝑏𝑦 columns can grow
exponentially with the number of categorical features. In such cases,
the sampling strategy leads to a more efficient generation and a
more diverse set of candidates.

In SMARTFEAT, users can set a sampling budget for feature
generation and a threshold for generation errors. The sampling
process continues until the budget for sampling or the threshold
for generation errors (invalid/repeated features) is reached.

Table 2 presents the prompt template and the FM output for the
high-order operator. The FM returns an operator with the selected
𝐺𝑟𝑜𝑢𝑝𝑏𝑦 columns, the aggregate column, and the aggregate func-
tion. Subsequently, SMARTFEAT parses the output and returns the
transformation function as the feature description and the feature
name as “GroupBy_Gcol_func_Acol”. The 𝐺𝑟𝑜𝑢𝑝𝑏𝑦 columns and
the aggregate column are included as relevant columns.

Generating the candidate feature set. We discuss how operator-
guided feature generation works, which aims tomaximize the cover-
age and efficiency of the generation process. We begin by exploring
unary operators for each original feature using the proposal strat-
egy. Based on the original and unary features, we apply binary
and high-order operators using the sampling strategy. Lastly, we
consider extractors that can operate on multiple inputs using the
sampling strategy, further enriching the current feature set.

We note that prediction performance improvement can also
benefit from removing features. In SMARTFEAT, we employ a
heuristic for dropping features: if an original feature undergoes a
unary transformation and is not used by any other operators, we
consider the original feature less important and, therefore, remove
it from the feature set. The exploration of utilizing FMs for feature
removal is left as future work.

3.3 Transformation function generation
After identifying candidate operators, the next step involves gener-
ating the transformation functions that compute the values of the
new features. For each candidate, the function generator initiates
an interaction with the FM to decide whether a transformation
function can be derived, leading to three possible scenarios.

Firstly, if a transformation function can be derived, SMARTFEAT
generates it using the relevant columns as input and the new feature
as the output. In most cases, interaction with FM is needed to obtain
the most appropriate and efficient transformation function. For
instance, employing FMs can assist in selecting suitable buckets for
bucketization and importing necessary library functions as required.
In the case of the high-order operator, the function generator can
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Table 3: Dataset statistics.
# of cat. attr # of num. attr # of rows field

Diabetes 0 9 769 Health
Heart 7 7 3,657 Health
Bank 8 10 41,189 Finance
Adult 8 6 30,163 Society
Housing 1 8 20,641 Society
Lawschool 5 7 4,591 Education
West Nile Virus 3 8 10,507 Disease
Tennis 0 12 944 Sports

construct the transformation function directly from the output of
the operator selector without the need to interact with the FM.

In certain situations, explicit functions may not be obtainable, re-
quiring row-level text completion to calculate the new feature value,
such as extracting the approximate population density for each city.
To address this, we serialize the data entries and append the new
feature name and a masked token as 𝐴1 : 𝑣1, · · · , 𝐴𝑘 : 𝑣𝑘 , 𝐴new :?,
and then query the FM to generate the new feature values. However,
for large datasets, the cost of obtaining these values through API
calls could be prohibitive. Hence, we provide users with several
examples and allow them to decide if the new features are valuable
enough considering the associated cost.

Lastly, in situations where the function generator cannot pro-
duce a suitable transformation function or text completion is not
applicable, the function generator suggests potential data sources
to assist data users in constructing the new feature.

Evaluating generated features. We implemented a basic verifica-
tion mechanism to ensure the quality of the features derived from
FM-generated code. After obtaining the feature values, we perform
feature selection to remove features that are highly null, single-
valued, or dummy variables derived from high-cardinality original
features. This feature selection process enhances the reliability and
effectiveness of the generated features.

4 EVALUATION
We explore the performance of various downstream classifica-
tion models when using features generated by SMARTFEAT with
datasets from diverse fields, including health, finance, society, edu-
cation, disease, and sports. We compare these against the state-of-
the-art AFE methods.

4.1 Experimental setup
Datasets. We conducted the evaluation on eight supervised bi-

nary classification datasets, publicly available on Kaggle3. The sum-
mary of dataset statistics is shown in Table 3. We assessed the
effectiveness of the FM in effectively handling column contexts
across various domains. We randomly partitioned each dataset
into 75% for training and 25% for testing and used 10-fold cross-
validation. Prior to conducting the feature engineering process, we
executed standard data cleaning procedures on the datasets, includ-
ing the removal of missing values (dropna) and the factorization of
categorical features.

Metrics. To assess the effectiveness of new features, we employed
five downstream machine learning classification algorithms from

3https://www.kaggle.com/competitions/

sklearn4, which include Linear Regression (LR), GaussianNB (NB),
Random Forest (RF), and Extra Tree (ET). Additionally, we incorpo-
rated a deep neural network (DNN) to demonstrate the potential im-
provement brought about by the constructed features, even though
DNNs inherently possess the capability to learn deep features [16].
For all models, we utilized default parameter settings. The neural
network architecture comprised two hidden layers, each consisting
of 100 units and employing the ReLU activation function. In our
evaluation, we considered the Area Under the ROC Curve (AUC)
as the primary performance metric.

Baselines. We compared SMARTFEAT with the SoTA AFE tools
as discussed in Section 2. However, only DSM [10], AutoFEAT [9],
and CAAFE [8] offer publicly accessible implementations. Conse-
quently, our experiments for comparison are based on these works.
For DSM, we utilized its community-supported tool called Fea-
turetools 5, which exhaustively generates new features using pre-
defined operators and incorporates feature selection to eliminate
highly correlated, highly null, and single-value features. AutoFEAT
(referred to as AutoFEAT 6) adopts a different approach by con-
structing a large set of non-linear features and subsequently per-
forming a search algorithm to select an effective subset. CAAFE7
is an AFE tool that utilizes FMs to generate Python code for data
transformations. It includes a validation step: newly generated
transformations are retained only if they demonstrate performance
improvement on the validation set. For the implementation of Fea-
turetools, we specifically utilized the primitives "add_numeric,"
"multiply_numeric," and "agg_primitive," while retaining default
settings for other parameters. For AutoFeat, we used all default
parameters. For CAAFE, we used its implementation with GPT-4
and 10 feature generation iterations as in [8].

In SMARTFEAT, we leveraged OpenAI’s GPT-4 as the FM in the
operator selector. For the function generator, we used the default
OpenAI model in LangChain (GPT-3.5-turbo) due to its compara-
ble performance and better efficiency. We employed the zero-shot
prompting method in all FMs. The sampling budget for operators
using the sampling prompting strategy was set to 10.

All experiments were conducted on a macOS system with a 1.4
GHz Quad-Core Intel Core i5 processor and 16GB of memory. We
established a time limit of one hour for all experiments.

4.2 Evaluation results
Classification result. Table 4 and 5 present the results of the evalu-

ation in terms of AUC values. The AUC improvement in percentage
compared with the initial AUC is shown in parentheses. We high-
lighted the best-performing approaches in bold and underlined the
baselines that do not support all ML models.

We reported the average and median AUC values across all clas-
sification models. The results indicate that the FM-assisted methods,
SMARTFEAT, and CAAFE consistently achieve better performance
compared with other baselines. SMARTFEAT achieves a perfor-
mance improvement of the average AUC for up to 13.3%, outper-
forming the other baselines in 5 out of 8 datasets (Table 4). However,

4https://scikit-learn.org/stable/supervised_learning.html
5https://featuretools.alteryx.com/en/stable/
6https://github.com/cod3licious/autofeat/tree/master
7https://github.com/automl/CAAFE

https://www.kaggle.com/competitions/
https://scikit-learn.org/stable/supervised_learning.html
https://featuretools.alteryx.com/en/stable/
https://github.com/cod3licious/autofeat/tree/master
https://github.com/automl/CAAFE
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Table 4: Comparison of the average AUC values (↑) of different ML models between SMARTFEAT and baseline methods.
Methods Diabetes Heart Bank Adult Housing Lawschool West Nile Virus Tennis

Initial AUC 82.20 67.38 91.46 76.81 86.72 84.00 78.96 77.93
SMARTFEAT 86.76 (+4.3%) 72.15 (+7.0%) 91.47 (≈) 87.00 (+13.3%) 92.19 (+6.3%) 83.68 (-0.4%) 82.12 (+4.0%) 87.39 (+9.5%)
CAAFE - 69.67 (+3.4%) 91.73 (+0.3%) 83.10 (+8.2%) 92.15 (+6.3%) 83.86 (-0.2%) 80.11 (+1.8%) 88.50 (+13.6%)
Featuretools 82.24 (≈) 66.78 (-0.9%) 91.04 (-0.5%) 73.85 (-3.9%) 79.47 (-8.1%) 83.82 (-0.2%) 73.12 (-7.4%) 81.29 (+4.3%)
AutoFeat 75.24 (-8.4%) 64.92 (-3.7%) - - 77.63 (-10.5%) - 70.90 (-10.2%) 71.73 (-8.0%)

Table 5: Comparison of the median AUC values (↑) of different ML models between SMARTFEAT and baseline methods.
Methods Diabetes Heart Bank Adult Housing Lawschool West Nile Virus Tennis

Initial AUC 83.18 69.19 92.77 80.63 91.28 83.73 77.66 80.41
SMARTFEAT 87.78 (+5.5%) 71.70 +(3.6%) 92.86 (≈) 86.97(+7.9%) 90.97 (-0.3%) 83.32 (-0.5%) 82.06 (+5.7%) 88.06 (+9.5%)
CAAFE - 70.87 (+2.4%) 93.06 +(0.3%) 87.00 (+7.9%) 92.84 +(1.7%) 83.77 (≈) 80.90 (+4.2%) 89.51 (+10.9%)
Featuretools 82.78 (-0.5%) 69.37(-0.3%) 91.06 (-1.8%) 68.91 (-14.5%) 73.39(-19.0%) 83.74(≈) 75.71 (-2.5%) 83.03 (+3.3%)
AutoFeat 84.20 (+0.1%) 70.42 (+1.7%) - - 75.65(-17.1%) - 76.53 (-1.4%) 67.83 (-15.6%)

we observed that the performance improvement on the Bank dataset
and the Lawschool dataset is not evident, as also observed in the
other baselines. This is because, in these two datasets, the origi-
nal features are well-constructed, making feature engineering less
impactful for performance enhancement.

CAAFE improves the performance of the initial AUC on all
datasets. This is because it uses the validation set to evaluate the
effect of each newly generated transformation and only retains
the ones that improve the model performance, effectively preserv-
ing the helpful transformations. However, this step would be im-
practical when working with large datasets. CAAFE experienced
a timeout on the DNN model on three large datasets, Bank, Adult,
and Bank. CAAFE outperforms SMARTFEAT mainly on datasets
that consist of more numerical features, such as the Tennis dataset.
This is because, without the operator selector, we observed that
the proposed transformations mainly perform combinations of nu-
merical attributes. In addition, CAAFE samples the feature values,
which also helps enhance the effectiveness of the transformations.
However, for datasets where diverse types of new features would
be beneficial, such as the West Nile Virus dataset, SMARTFEAT
can generate more helpful features. CAAFE failed on the Diabetes
dataset in that it suggested divide-by-zero transformations without
handling the NAN values and caused the ML models to fail.

On the other hand, the transformations performed by Feature-
tools and AutoFeat are agnostic to the dataset context and the
prediction task. In some cases, this results in the new features be-
ing less suitable for improving prediction performance, sometimes
leading to a decrease in the AUC values for these baselines.

Efficiency. Feature generation is a task performed in concordance
with human designers. As such, we need systems to take no more
than a few minutes. On all datasets, both SMARTFEAT and Fea-
turetools finished in well under 10 minutes. This was not the case
for Autofeat, as it did not finish within our 60-minute time-out for
the Bank and Adult datasets. As discussed earlier, CAAFE also ex-
perienced a time-out on large datasets and complex models due to
the validation step. It also incurs a relatively higher time compared
to SMARTFEAT and Featuretools in general.

Feature importance. We now delve into the features generated by
different approaches to assess their usefulness. We focus on the Ten-
nis dataset where most of the approaches demonstrate effectiveness.

We assessed the feature importance of all features, including both
the new features and the original feature set. We evaluated three
feature selection metrics provided by sklearn: the Information Gain
(also known as mutual information), Recursive Feature Elimina-
tion, and Feature Importance metric based on tree-based selection
(indicator for Gini index). We excluded statistics like 𝜒2−test or
F-value as they are only applicable to either categorical or numer-
ical attributes. Specifically, we examined the percentage of new
features in the top-10 important features identified by each metric.
For example, if SMARTFEAT has IG@10 = 80%, it means that 8 out
of the top 10 ranked features under the information gain metric
are new features generated by SMARTFEAT. A higher percentage
indicates the generation of more useful features.

As shown in Table 6, CAAFE generates a small number of new
features, mainly due to the removal of features in the validation
step. However, all new features generated by CAAFE are considered
important under all metrics. In comparison with the other two base-
lines, SMARTFEAT generates a smaller number of new features.
This is attributed to the operator selector, which intelligently selects
a subset of operators based on column context, avoiding an exhaus-
tive enumeration of all possible features. SMARTFEAT demon-
strates effectiveness in obtaining helpful features. Featuretools also
successfully obtains important features but with a relatively large
number of generated features. AutoFeat initially acquires a vast
set of new features, but the feature selection steps only retain 5
features, which are shown less helpful under these metrics.

Ablation study. We conducted an ablation study to show how dif-
ferent operators in SMARTFEAT contribute to improving prediction
performance. Using the Tennis dataset as an example, we assessed
the AUC values obtained by adding the new features generated by
each type of operator.

As shown in Table 7, the binary and extractor operators bring
performance improvement in most cases, particularly for NB, RF,
and ET. In this dataset, the features introduced by the extractor
are mainly index-like attributes computed from the combination
of a set of attributes. LR’s performance remains almost unaffected,
indicating that feature engineering does not provide substantial
benefits in this case. For DNN, we observed that almost all types
of features contribute to enhancing the prediction results. This is
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Table 6: Percentage of top-10 important features (↑) generated by
different methods under varying feature selection metrics, Tennis.

SMARTFEAT CAAFE Featuretools AutoFeat
# generated features 25 5 89 (sel-35) 1978 (sel-5)

IG@10 90% 50% (all) 90% 10%
RFE@10 80% 50% (all) 90% 30%
FI@10 80% 50% (all) 90% 30%

Table 7: Ablation study on operators in SMARTFEAT across differ-
ent downstream ML models, Tennis.

Initial +Unary +Binary +High-order +Extractor all

LR 88.17 88.27 88.51 88.22 88.53 88.06
NB 66.85 65.16 79.68 66.49 90.00 84.05
RF 80.41 81.17 87.38 80.15 89.88 89.56
ET 79.14 75.14 88.02 77.56 90.04 88.86
DNN 84.50 87.31 87.57 86.08 86.92 86.46

Avg 79.81 79.41 86.31 79.70 89.07 87.39

because Tennis is a relatively small dataset, where simple models
with well-constructed features usually perform better.

However, it’s important to note that this trend may not be con-
sistent across other datasets. For example, in the West Nile Virus
dataset, the most beneficial features are those generated by the
high-order operators.

Impact of Feature Descriptions. We also investigate the signifi-
cance of having informative feature descriptions as input. To assess
this, we conducted a comparative experiment on the Tennis dataset
using only feature names without descriptions in SMARTFEAT. The
feature names in the Tennis dataset are less descriptive, featuring
abbreviations like FSW.1 to represent "First Serve Percentage for
player 1." In this experiment, the AUC score dropped to 77.86 (-1.4%)
for the average and 79.39 (+2.2%) for the median. The experimental
results emphasize the importance of including meaningful feature
descriptions, particularly when clear and informative feature names
are not available.

5 FINAL REMARKS
Foundation models hold the promise of leveraging contextual in-
formation and open-world knowledge for many data management
and analysis tasks, such as feature generation. However, it is infea-
sible to feed these models with simple linearizations of relational
tables for large databases, for reasons of efficiency and cost, even
if the FMs were able to accept such large inputs. In this paper, we
proposed operator-guided feature generation, coupled with feature-
level interactions with FMs, to achieve both high efficiency and
comprehensive coverage.

Moreover, FMs are susceptible to unpredicted errors, arising from
limited access to data context or the inherent generative nature
of FMs. To mitigate these errors, we employ feature selection to
reduce the risk of generating low-quality features. While our exper-
iments demonstrate the advantages of feature generation, further
improvements in error correction and detection are areas for future
research. Integrating Foundation Models into data systems also
poses challenges, especially when FMs rely on natural language
input. Our paper primarily focuses on feature generation tasks,
exploring one potential solution by discovering potential opera-
tors and their corresponding transformations. However, for more

complex data-wrangling tasks that involve exploring data content
and enabling feature-level interactions, discussions on obtaining
informative data descriptions become essential.
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