
NL2SQL is a solved problem... Not!
Avrilia Floratou

1
, Fotis Psallidas

1
, Fuheng Zhao

2,∗
, Shaleen Deep

1
, Gunther Hagleither

3
, Wangda

Tan
4
, Joyce Cahoon

1
, Rana Alotaibi

1
, Jordan Henkel

1
, Abhik Singla

1
, Alex van Grootel

1
, Brandon

Chow
1
, Kai Deng

1
, Katherine Lin

1
, Marcos Campos

1
, Venkatesh Emani

1
, Vivek Pandit

1
, Victor

Shnayder
1
, Wenjing Wang

1
, Carlo Curino

1

1
Microsoft,

2
University of California, Santa Barbara,

3,4
Waii

1
firstname.lastname@microsoft.com,

2
fuheng_zhao@ucsb.edu,

3
g@waii.ai,

4
w@waii.ai

ABSTRACT
The development of natural language (NL) interfaces for databases

has been notably shaped by the rise of Large Language Models

(LLMs), which provide an easy way to automate the translation of

NL queries into structured SQL queries. While LLMs bring valu-

able technical advancements, this paper stresses that achieving

Enterprise-Grade NL2SQL is still far from being resolved, neces-

sitating extensive novel research in various domains. We present

insights from two competing teams dedicated to delivering reli-

able enterprise-grade NL2SQL technology, shedding light on chal-

lenges faced in real-world applications, including handling complex

schemata, dealing with ambiguity in natural language statements,

and incorporating it in our benchmarking methodologies and re-

sponsible AI considerations. While this paper may raise more ques-

tions than it answers, its aim is to act as a catalyst for a fruitful

discussion on the topic. Additionally, it provides a practical pathway

for the community to develop enterprise-grade NL2SQL solutions.

KEYWORDS
natural language interfaces, databases, large language models

1 INTRODUCTION
The advent of Large Language Models (LLMs) has profoundly trans-

formed the field of Natural Language Processing (NLP). No task is

likely to have a greater impact on the database community than

advancements in NL2SQL, i.e., the automatic translation of nat-

ural language (NL) to database queries expressed in the popular

declarative language SQL. This has the potential to bring about a

significant transformation in system accessibility, by popularizing

direct DB querying to 10× to 100× more users. As a result, NL2SQL

has been the subject of research for many years [16, 24, 26] but no

approach as of yet has reached a degree of accuracy sufficient to

garner broad commercial success.

The LLM revolution is promising to change all that, and a work-

ing NL2SQL technology has the potential to transform our industry:

how to do this is one of the hottest areas of debate for DB venues

such as CIDR. Countless blog posts and tutorials will have us believ-

ing that NL2SQL is now a solved problem, and that vanilla ChatGPT

can tackle all of our SQL generation needs. We beg to differ, and

∗
Work done while at Microsoft

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2024. 14th Annual Conference on

Innovative Data Systems Research (CIDR ’24). TODO, Chaminade, USA

while we agree that LLMs are game-changing, in this paper, we

show that achieving Enterprise-Grade NL2SQL is far from trivial,

and even benchmarking such systems requires novel research.

This paper is unusual as it captures the shared views of two com-

peting teams working on NL2SQL from within a stealth startup and

from Microsoft. Each team is feverishly working to deliver reliable

NL2SQL tech capable of handling a broad set of real-world use cases

(i.e., enterprise-grade). In this process, each team has discovered a

rich set of challenges and the many customer interactions has given

us a unique vantage point on user’s actual expectations for such

technologies. We come together in this writing to provide a more

complete problem statement for Enterprise-Grade NL2SQL. We feel

this writing is timely and a necessary public service announcement

as we have observed many oversimplified takes on the problem in

public forums and private conversations within our community.

One of the main contributions of this paper is a real-world-backed

problem statement for this area of research—some of the overlooked

problems we discuss include complex database schemata, ambiguity

in NL queries, understanding when a database cannot answer a

query, benchmarking limitations, controlling for model biases (e.g.,

gender/racial stereotypes), and dealing with harmful content.

Although this paper provides a comprehensive overview of the

numerous challenges, it also delves into specific areas, conduct-

ing a preliminary investigation that sheds light on potential is-

sues and outlines a trajectory for future research. One of our key

contributions is to focus on understanding when the user intent

is ambiguous and making a case that we should incorporate the

uncertainty introduced by ambiguity into NL2SQL benchmark-

ing. In particular, we show that even basic benchmarking in this

space is unsolved (and likely to require deep novel research beyond

the scope of this paper). The key concern is how to benchmark

in the presence of ambiguity. We propose an initial heuristic ap-

proach to tackling this problem. As a simple example, consider

an NL request for "details of a sale": the statement is inherently

ambiguous and a user might be equally satisfied by answers con-

taining [𝑖𝑡𝑒𝑚_𝑖𝑑, 𝑑𝑎𝑡𝑒, 𝑝𝑟𝑖𝑐𝑒] and [𝑖𝑡𝑒𝑚_𝑛𝑎𝑚𝑒, 𝑝𝑟𝑖𝑐𝑒], rendering
traditional string-match or execution-match metrics ineffective.

The naïve take of ignoring ambiguous queries is impractical as the

majority of the customers we discussed with intend to use com-

pact and very informal language to interact with our systems—in

fact, correctly supporting ambiguous queries (e.g., using context

or history to disambiguate) would make NL2SQL technology most

useful. We present a pragmatic approach to this problem leveraging

a relaxation of execution-match (which we validate by talking with

potential customers), but also discuss how deeper research work is

needed for a more sound and complete assessment.



CIDR’24, January 14-17, 2024, Chaminade, USA Floratou and Psallidas, et al.

This paper by construction raises more questions than it an-

swers, but also points towards a pragmatic path forward, and is

designed to trigger some (hopefully heated) discussion on what we

must demand from future NL2SQL technology, and what are the

implications if we fail to pick the right measuring stick.

We organize the rest of the paper around four core challenges:

Schema Complexity (§2), Ambiguity and Semantic Mismatch (§3.1),

Benchmarking (§4), and Responsible AI (§5).

2 SCHEMA COMPLEXITY
Real-world databases often have intricate schemata, characterized

by complexity in various dimensions such as large number of tables

and columns and domain-specific terminology. As an example, one

of Microsoft’s internal financial data warehouses consists of 632

tables containing more than 4000 columns and 200 views with more

than 7400 columns. Similarly, another commercial dataset tracking

product usage consists of 2281 tables containing a total of 65000

columns and 1600 views with almost 50000 columns. Both schemata

contain columns with abbreviated names and custom terminology

that only domain experts can understand. These schemata are much

more complex than those included in the standard NL2SQL bench-

marks such as Spider [27], KaggleDBQA [15] and BIRD [17].

NL2SQL solutions face challenges in such environments, particu-

larly when relying on LLMs. These solutions often create a prompt

that includes the natural language query, schema information, and

additional details like sample rows per table or few-shot examples.

This prompt is used to invoke the LLM and produce the SQL query

that corresponds to the NL question. However, as the database

schema expands, such approaches encounter certain limitations.

Firstly, the context window of LLMs is limited, making it difficult

to accommodate the entire database schema within the prompt.

Secondly, recent research [18] indicates that increasing the prompt

size to include more information doesn’t necessarily improve per-

formance; in fact, it can lead to a significant decrease in accuracy

as the input context becomes longer. Thirdly, intriguingly, in our

experiments, we observed that even when the schema can fit in

the prompt, better accuracy can be achieved by selecting only the

relevant tables and columns related to the NL query.

Figure 1 shows our results on the KaggleDBQA benchmarkwhich

consists of 17 tables and 246 columns. This schema is small enough

to fit in the prompt of an LLM like GPT-3.5. To highlight the ef-

fects of schema context, we use a simple prompting strategy that

includes the NL query and the schema, and use GPT-3.5 to generate

the corresponding SQL. Upon analysis, we observed that when

incorporating the full schema in the prompt, the execution match

accuracy reaches 22.7%. However, by manually selecting only the

tables and columns relevant to each query, based on the ground

truth queries from the benchmark, and including only those in

the prompt, the accuracy increases by 7%. On the other hand, se-

lecting the relevant tables and all the associated columns yields a

smaller accuracy increase of (2%). These results demonstrate that

even when the schema can entirely fit in the prompt, selecting

only the pertinent tables and columns can significantly improve

performance. Hence, devising techniques to select relevant parts of

the schema can be advantageous for both small and large schemata.

Figure 1: Execution match accuracy for the KaggleDBQA
dataset using various schema selection techniques.

Figure 1 illustrates the outcomes of two simple schema selection

techniques we evaluated: RAG and LLM-based. The former involves

creating embeddings (using the text-similarity-davinci-001
model) for table and column names and using nearest-neighbor

search with cosine similarity as the distance function to identify

the most similar ones to the NL query. Subsequently, we include

only those in the prompt. The latter approach first utilizes the LLM

to identify the relevant tables and columns to the NL query and

incorporates only those in the prompt sent through a second call

to the LLM. While these techniques show promising results, the

accuracy still falls below the full schema baseline and significantly

below the optimal accuracy.

Future Research Directions. To achieve enterprise-grade NL2-
SQL solutions capable of handling extensive schemata while main-

taining high accuracy, it is crucial to develop techniques that can

identify relevant portions of the schema for a given NL query. Our

preliminary investigation shows that such techniques have the po-

tential to improve performance for small schemata as well. However,

simple RAG and LLM-based solutions for schema selection cannot

yet reach the optimal performance even on the simpler open-source

benchmarks, but as we demonstrated with an oracle approach, do-

ing so could significantly affect the quality of the generated SQL.

Therefore, further research and innovation is well justified to refine

these techniques and achieve their full potential.

3 AMBIGUITY AND SEMANTIC MISMATCH
In this section, we delve into two issues concerning user intent

comprehension and its alignment with the underlying database

in the context of NL2SQL systems. The first problem pertains to

the inherent ambiguity present in natural language and how it

poses challenges for these systems. The second problem involves

semantic mismatch, where the user’s intent cannot be effectively

fulfilled by the provided database.

3.1 Ambiguity
Natural language is inherently ambiguous, making it susceptible to

multiple interpretations. Resolving this ambiguity is a critical task

in natural language processing to ensure accurate communication

between humans and machines. In the context of database query-

ing, the presence of database-related context, including database

schema, values, and annotations, introduces an additional layer of



NL2SQL is a solved problem... Not! CIDR’24, January 14-17, 2024, Chaminade, USA

complexity. Unfortunately, ambiguity in the context of NL2SQL

has not garnered sufficient attention from the data management

community. However, with the growing prevalence of NL2SQL tech-

nologies, there is a pressing need to delve into the diverse forms

and manifestations of ambiguity and develop suitable techniques

for its detection and resolution, tailored to the specific requirements

of various applications.

We present an initial effort to establish a definition of ambiguity

in the context of NL2SQL. We assume that an NL2SQL solution will

identify when a given NL query cannot be answered by the database

and return an appropriate message (denoted as 𝜙 below)
1
. After

establishing a basic definition, we showcase several instances of am-

biguity encountered during our investigation and offer preliminary

findings on automating the detection of ambiguity.

Definition 1. Consider the universe of non-equivalent2 SQL
queries 𝑄 = {𝑞1, ..., 𝑞𝑁 }, which can be formulated on a given data-
base𝐷 . Let𝜙 indicate the case where the NL query cannot be answered
by 𝐷 . Given an NL query 𝑠 and a deterministic 3NL2SQL mapping
𝑓 : 𝑠 → P(𝑄)⋃𝜙 , where P(𝑄) is the power set, we say that 𝑠 is
ambiguous, if 𝑓 (𝑠) has a cardinality of at least two.

In other words, the definition above captures the intuition that

if two non-equivalent and acceptable SQL queries can answer an

NL query 𝑠 , then 𝑠 is ambiguous.

As part of our exploration, we thoroughly examined the 272 ques-

tions within the KaggleDBQA [15] dataset and sought input from

two users to identify ambiguous questions based on Definition 1.

Considering that individual perceptions of ambiguity in NL queries

may differ, we marked a query as ambiguous if either one of the

annotators marked it as such. Interestingly, we found that the bench-

mark does contain 112 ambiguous questions which correspond to

the 41.1% of the questions in the dataset
4
. We then performed an

analysis of the major types of ambiguity we encountered in the

dataset that are presented below:

• Ambiguous mapping to DB schema. The NL query is precise,

but there is potentially more than one way to map it to the DB

schema. For example, let’s take the query “Where is the most
dangerous area?” The table contains two columns containing

geographical information, Location and LSOA (Lower Layer Super
Output Area), and it is not clear which of the two should be used.

36.6% of ambiguous queries fall in this category.

• Ambiguous mapping to DB values. In this case, the NL query

is precise, but it is unclear how to formulate WHERE statements

in the generated SQL query. For example, consider the query

“How many nuclear power plants are in preparation to be used in
Japan?”. One could expect this query to use a filter on the status
column of the form status LIKE ‘%preparation%’. However,
the value “Under Construction” is also valid and is, in fact, what

1
We discuss this assumption later in this section as we present the problem of semantic

mismatch.

2
Two queries𝑄1 and𝑄2 are equivalent if𝑄1 (𝐷 ) = 𝑄2 (𝐷 ) for all possible database
instances 𝐷 [9].

3
In practice, the mapping is probabilistic as even humans might have different percep-

tions of which SQL query corresponds to a given NL query. We leave the investigation

of this aspect as future work.

4
In the following section, we discuss the problems with existing benchmarks and the

lack of consideration of the existence of ambiguity in the NL statements.

is used in the corresponding filter of the ground truth query.

19.6% of ambiguous queries fall in this category.

• Ambiguous language in the NL query. These are cases where
there is not enough context to determine the intent of the user.

For example, consider the query “Which kind of pesticide is the
easiest to be tested?”. In this case, there could be multiple ways

to determine how easy it is to test a pesticide, e.g., based on its

concentration, number of samples needed to perform the test,

etc. 34.8% of ambiguous queries fall in this category.

As the next step, we conducted an initial investigation to explore

the ability of LLMs to identify ambiguity and the extent to which

their assessments align with human annotators. For this study, we

employed both GPT-3.5 and GPT-4. We designed a prompt that

inquired whether a given NL query is ambiguous in the context

of a specific database, as per Definition 1 mentioned earlier. The

results of our experiments are presented in Figure 2. To measure

agreement, we computed the rate of agreement between human

annotators and also between humans and LLMs. The agreement

rate between two parties, X and Y, is calculated as the percentage

of NL queries on which both X and Y agreed on the label, divided

by the total number of queries.

Notably, even human annotators do not consistently agree on

whether a question is ambiguous with respect to a given database,

and the agreement rate between them is approximately 62%. When

compared to human annotators, GPT-3.5 exhibits a lower agree-

ment rate of only 44%. On the other hand, GPT-4 demonstrates

a significantly higher agreement rate with humans (65%). These

results show that advanced LLMs, such as GPT-4, are potentially

capable of identifying ambiguity to the extent humans can.

While the obtained results show promise, the low rate of agree-

ment between human annotators indicates that the concept of

ambiguity lacks a universally clear definition when it comes to

determining whether an NL query on top of a database is ambigu-

ous or not. This inherent challenge arises from how users express

their intentions in natural language, and it underscores the need

for a more refined definition of ambiguity—one that considers the

likelihood of various interpretations of the NL statement. Due to

the significant disparity among human annotators concerning this

ambiguity definition, it is not meaningful at this stage to compute

the precision and recall of LLMs on this particular task. Further

work is necessary to establish a more precise and agreed-upon

understanding of ambiguity before assessing the performance of

LLMs in handling such scenarios.

Future Research Directions. Our investigation has led to sev-

eral findings: 1) Existing NL2SQL benchmarks do include ambigu-

ous queries but contain a single ground truth SQL query per NL

question—making it challenging to accurately evaluate NL2SQL

solutions using them. We expand on benchmarking in the following

section. 2) The perception of whether an NL query is ambiguous

differs among human annotators which probably denotes that we

need a better definition of ambiguity, potentially embracing its

probabilistic nature and incorporating the likelihood of the various

interpretations for a given query (this will require large scale and

labor-intensive investigations). 3) Advanced LLMs such as GPT-4

exhibit a similar agreement rate to human annotators, which is a

promising (though very initial) result with respect to their capabili-

ties of identifying ambiguity in the context of NL2SQL.



CIDR’24, January 14-17, 2024, Chaminade, USA Floratou and Psallidas, et al.

Figure 2: Agreement rate between human annotators and
LLMs (GPT-3.5 and GPT-4).

These findings present new avenues for research in this field.

Firstly, it becomes evident that Enterprise-Grade NL2SQL systems

must address the challenge of ambiguity. Therefore, it is imperative

to develop appropriate benchmarks and benchmarking method-

ologies that include label, and measure the overall performance

on ambiguous queries to the best extent possible. Secondly, rec-

ognizing the probabilistic nature of ambiguity is essential in our

NL2SQL solutions. To accomplish this, we should fully integrate the

concept of ambiguity into our workflows. This entails developing

techniques to identify ambiguity within a given NL query, gaug-

ing the likelihood of different interpretations, and implementing

mechanisms to seek further clarity. One effective approach is to

engage users through targeted questions that help elicit additional

information and reduce uncertainty. Lastly, exploring the potential

of LLMs to detect ambiguity and provide multiple interpretations

represents a captivating avenue for future research.

3.2 Semantic Mismatch
NL2SQL solutions have primarily been designed under the assump-

tion that the input question can indeed be answered by the underly-

ing database. However, in practice, this may not always be the case.

End-users may not know the semantics of (all or some) columns or

tables. As such they may express intents that cannot be answered by

the underlying database. Such intents can be either completely or

partially mismatched by the database. As an example of the former,

a business user may ask a financial question over an unrelated HR

table. As an example of the latter, consider a table singers(name,
cause_of_death, . . . , year). The semantics of year is the

year the singer released their first album. For the question “How
many singers died due to covid in 2021", an LLM is likely to generate

the query SELECT * FROM singers WHERE cause_of_death LIKE
’%covid%’ and year=2021. While the predicate on cause_of_death

is correct, the predicate on year misses the semantics of the year

column, leading to a wrong response.

As discussed in the definition of ambiguity above, ideally, the

NL2SQL solution should be able to inform users when their question

cannot be answered by the database (i.e., return 𝜙). We performed

an initial investigation to explore whether LLMs can detect when

an NL query cannot be answered by a given database. For our ex-

periment, we used both the KaggleDBQA and Spider benchmarks.

In particular, we attempted to run the NL queries from the Spider

benchmark on top of the crime database of the KaggleDBQA bench-

mark. We asked the LLM to generate an appropriate SQL query

for a given NL question or to return 𝜙 if the question cannot be

answered by the database. We additionally included two examples

in the prompt to teach the model when to return the 𝜙 value: 1) a

Spider question asked on the KaggleDBQA database returning the

𝜙 value, and 2) a KaggleDBQA question asked on the correspond-

ing KaggleDBQA database returning the correct SQL query. We

experimented with two models (GPT-3.5 and GPT-4).

The ideal outcome in our setup would be to receive a 𝜙 response

for all the NL queries in the Spider benchmark. The GPT-3.5 model

correctly identified that a question cannot be answered by the

database for only 60% of the questions. For the remaining 40% of the

questions, GPT-3.5 generated a SQL query that typically included

a part of the KaggleDBQA schema but also hallucinated table and

column names that do not appear at the schema at all. GPT-4, on the

other hand, correctly detected that the database cannot answer any

of the Spider questions. These results demonstrate that advanced

LLMs are quite capable of identifying semantic mismatch.

Future Research Directions. Detecting semantic mismatch

is important when deploying NL2SQL solutions. Our experiments

with GPT-4 are quite promising. However, it is worth noting that

GPT-4 is a very large model with a much higher cost than models

such as GPT-3.5 (GPT-4 is about 30𝑋 more expensive than GPT-3.5

per 1K tokens [1] at the time of this writing) and significantly higher

latency, which makes it more challenging to deploy in production.

Devising techniques to identify semantic mismatch with smaller

and cheaper models is an important direction for future work.

4 BENCHMARKING
As the demand for seamless interaction between natural language

and databases grows, benchmarking becomes essential to assess the

performance and capabilities of NL2SQL systems. Multiple bench-

marks have been proposed for evaluating NL2SQL approaches such

as Spider [27], KaggleDBQA [15], and BIRD [17]. These bench-

marks have been instrumental in pushing the boundaries of the

field. However, real workloads have aspects that do not manifest

in these benchmarks and the associated evaluation methodology.

For example, as we demonstrated in §3.1, 41% of the queries in

the KaggleDBQA benchmark were characterized as ambiguous by

human annotators. Nevertheless, this benchmark only provides a

single ground truth query associated with each NL query, over-

looking the possibility of multiple interpretations. Moreover, the

evaluation criteria are often overly conservative, deeming a failure

even if a produced SQL query correctly corresponds to another

likely interpretation. In this section, we highlight the need for more

comprehensive benchmarks and evaluation metrics that can better

accommodate the inherent complexities and uncertainties present

in real-world NL2SQL scenarios.

For our purposes, an NL2SQL benchmark consists of a set of

NL queries and their associated ground truth SQL queries on top

of a database. The database schema and data are available. The

benchmark is executed through a benchmarking framework that

evaluates a givenNL2SQL approach by iterating over the NL queries,

generating a corresponding SQL query, and then comparing it to

the ground truth query. The outcome of the benchmarking run is



NL2SQL is a solved problem... Not! CIDR’24, January 14-17, 2024, Chaminade, USA

an accuracy score that quantifies the number of generated queries

that match the ground truth queries. The purpose of a benchmark is

to establish an easy-to-test against the environment, that faithfully

simulates real-world user experience, associating a higher score to

a better user experience. Common metrics to evaluate whether two

queries match are the exact string match and execution match [17]

metrics. The former simply compares whether the two queries have

the same string representation. The latter requires executing the

queries on the input dataset and confirming that their results are

the same. Both types of metrics are problematic: exact match is

typically overly conservative as it does not account for semantically

equivalent but syntactically different queries. Execution match also

has limitations as it does not account for cases where multiple an-

swers/interpretations could be correct. As an example consider the

query "Find the semester when both Master students and Bachelor stu-
dents got enrolled in." from the Spider benchmark. The correspond-

ing ground truth query returns the semester_ID column. Now

imagine an NL2SQL solution returning both the semester_name
and semester_ID columns. The user would likely be satisfied with

this answer, but the existing evaluation metrics (through exact and

execution match) would mark this case as a failure.

The problem with the above benchmarking approach is that it fo-

cuses solely on correctness rather than the notion of usefulness of the
generated SQL query. A benchmark is only valuable if it correctly

models the reality, in this case, the likely degree of satisfaction of

a user leveraging an NL2SQL technology. As such, we propose a

shift towards intent-based benchmarking frameworks and argue

that this is necessary. Intent-based benchmarking is characterized

by evaluation centered around determining whether the generated

SQL query effectively satisfies the original user’s intent. By focus-

ing on the alignment with the user’s intention, such a framework

would offer a more comprehensive and meaningful assessment of

NL2SQL systems, ensuring that the generated queries not only ex-

hibit correctness but also meet the underlying purpose of the user’s

natural language query.

While desirable in principle, grasping the user’s intent presents

a challenge due to the inherent ambiguity of natural language as

discussed in §3.1 and the limited visibility into the user’s domain ex-

pertise. Nevertheless, by making some reasonable assumptions, we

can lay the foundation for developing an intent-based benchmark-

ing approach. As a first step, we propose a newmetric for evaluating

whether a generated SQL query “matches” a ground truth query

in a benchmark that we call intent-based execution match. This
metric considers both the database schema and the results of the

query execution of the generated query (𝑞) and the ground truth

query (𝑞) to determine whether there is a match. The idea behind

the new metric is simple: We compare the execution results of the

two queries and apply a set of rules based on the schema structure

to determine whether certain deviations should be allowed. The

relaxation rules are designed such that the responses, though devi-

ating from the original ground truth still satisfy the likely intent

of a rational user. These rules have been devised as a pragmatic

stop-gap and are based on extensive discussion across our (as you

recall from the introduction) competing teams, and validated in

several customer conversations. As such they represent a valid and

pragmatic attempt to establish intent-based benchmarking mecha-

nisms. More formal work in this space is ongoing, and will likely

require input from our community.

In general, any generated query 𝑞 that is semantically equiva-

lent [9] to the ground truth query𝑞 provided in the benchmarkmust

be considered correct.
5
We now propose the following relaxation to

the criteria for semantic equivalence between the generated query

𝑞 and the ground truth query 𝑞.

(1) We allow different row ordering in the results of 𝑞 and 𝑞

unless the user specifically asked for a particular ordering.

(2) We allow the (unordered) set of columns in 𝑞, 𝑐 (𝑞), to be

a superset of the set of columns in 𝑞, 𝑐 (𝑞). For example,

if 𝑐 (𝑞) contains the employee_name and employee_salary
columns and 𝑐 (𝑞) contains only the employee_name column

then this is still considered a match.

(3) Furthermore, in the case where no columns are explicitly

mentioned in the NL query, we also consider candidate keys

in 𝑐 (𝑞) to match other candidate keys in 𝑐 (𝑞). For example,

let’s take again a look at the query “Find the semester when
both Master students and Bachelor students got enrolled in”
that we discussed above. Although the NL query is precise,

there could be multiple mappings to the DB schema (see

ambiguity categories in §3.1). Using this relaxation based

on candidate keys, any interpretation resulting in a SQL

query returning semester ID, semester name or both would

be marked as correct as both columns are candidate keys in

the semester table.

4.1 Archerfish Benchmarking Framework
As a first step to address the above challenges, we are introducing

a novel open-source NL2SQL benchmarking framework named

Archerfish [3]. The primary objective of this framework is to en-

able the assessment of various NL2SQL systems and methodologies

across a multitude of datasets, facilitating their comparison through

a range of evaluation metrics. Our aspiration is to actively involve

the wider database community in further developing this frame-

work, transforming it into a robust tool for NL2SQL benchmarking

and evaluation.

An Archerfish benchmark consists of a set of (NL question and

SQL ground truth) pairs over a database. The framework is com-

prised of the following key components:

• Driver: Interfaces with the underlying NL2SQL system and

orchestrates the overall execution process.

• Analyzer: Implements various evaluation metrics including

exact match, execution match, and the intent-based execu-

tion match introduced in this paper. The analyzer evaluates

whether the generated querymatches the ground truth query

using the metric defined by the user.

• Database, Question Bank & Ground Truth Specs: Speci-
fication files to describe a given benchmark.

5
Similar to existing work, we use the execution match metric as a proxy to semantic

equivalence. This metric is not ideal as it will accept a query as “matching” when it

returns the same result with the ground truth query on the given DB instance. However,
the generated query might not be semantically equivalent to (any of) ground truth(s)

in the general sense. Thus, techniques such as [29] should be used instead when they

are robust enough to capture the full SQL grammar.



CIDR’24, January 14-17, 2024, Chaminade, USA Floratou and Psallidas, et al.

38.71%

26.32% 26.25%

82.26%

89.47% 87.50%88.71%
94.74% 92.50%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

TVSHOW EMPLOYEE_HIRE_EVALUATION FLIGHT_2

Exact Match Execution M atch Intent-Based Match

Figure 3: NL2SQL accuracy on the Spider dataset using vari-
ous evaluation metrics

• Generator: An optional tool that facilitates the generation

of benchmarks directly from a given database.

• Results View: An HTML page visualizing the results of the

benchmark run.

To demonstrate the practicality of Archerfish, we ran the Spi-

der benchmark and collected various metrics: the original exact

and execution match and the more relaxed intent-based execution

match. The results on three Spider databases are reported in Figure

3. The test was performed with a simple prompt that includes the

database schema and NL question, against GPT-4 [8]. As expected,

the intent-based metric is less strict than both the exact match and

the execution metric allowing to account for correctness in the pres-

ence of ambiguity. As an illustration, consider the question, "Which
airline has the highest number of flights?" The ground truth query

yields a result with only one column, which is the airline name. On

the other hand, the query generated by the LLM, not only returns

the airline name but also includes the total number of flights for

that airline. According to the original execution match metric, this

would be considered a failure because it introduces an additional

column. However, from a user’s perspective, the resulting query

and table still correctly answer the question while offering extra

(potentially valuable) information. In this case, the intent-based

metric classifies this example as a success.

Our framework is extensible in multiple dimensions. First, it

allows users to incorporate new benchmarks and test cases. This

makes it easy to create customized workloads to test specific do-

mains. It is also possible to include proprietary datasets to extend

the testing to areas where privacy is a concern. The framework can

also be used in conjunction with other works such as QATCH [22]

to automatically generate benchmarks from existing databases.

Second, Archerfish allows incorporating additional database man-

agement systems and SQL dialects with PostgreSQL as the default.

Third, the framework allows to add new evaluation metrics to mea-

sure performance in various dimensions (e.g., accuracy or response

time). Finally, users can also provide additional context that can be

leveraged in prompts (e.g., business terminology or data catalogs).

FutureResearchDirections. Intent-basedNL2SQL benchmark-

ing presents a promising avenue for future research. Our proposed

novel metric attempts to relax the assumptions made by previous

metrics concerning what constitutes a successful NL2SQL mapping.

However, even this metric falls short of capturing the full spectrum

of acceptable queries from the user’s perspective. Consequently,

there remains an open question regarding how to adapt our bench-

marking methodology to encompass this spectrum effectively.

Furthermore, modeling ambiguity in the benchmarks, not only

by providing annotations on the ambiguity of NL queries but also

by the benchmarking methodology itself, is crucial. Benchmarking

frameworks should incorporate components that evaluate whether

an NL query is ambiguous, potentially generating multiple interpre-

tations and their associated SQL queries for comparison with the

ground truth. Introducing multiple interpretations necessitates the

development of novel metrics to assess how well the system ranks

these interpretations in terms of their likelihood of representing

the user’s intent. Similar ideas have been discussed in the context

of information retrieval and web search [20], and we believe that

prior work in this space can be adapted in our context as well.

5 RESPONSIBLE AI
The inherent ambiguity of natural language, the probabilistic nature

of LLMs, and potential ill-intentions from individuals have led to

an increasing number of concerns related to Responsible AI for

NL2SQL solutions. In this section, we shed light on the concerns we

have encountered and outline corresponding research directions.

Harmful Content. The presence of ill-intended users introduc-

ing harmful content is a concerning issue, and LLMs have been

known to generate completions containing such content [13, 21, 30].

Detecting and blocking such harmful content is crucial in LLM expe-

riences like Microsoft Copilot [5], and the same applies to NL2SQL

systems. However, in the context of NL2SQL, databases themselves

may contain sensitive or harmful content. Consider a police depart-

ment maintaining a database of criminals, where an officer needs

to search for crimes with a specific pattern. The input questions

and completions may naturally contain harmful content in this sce-

nario. Nevertheless, such content should be allowed, and so would

its querying due to the nature of the database.

To address this challenge, we believe that enabling NL2SQL

solutions to decide whether to block or allow harmful content con-

ditioned on database semantics presents an interesting research

direction. Finding ways to distinguish between harmful content

that genuinely aligns with the purpose of the database and harm-

ful content introduced with malicious intent will be critical for

responsible and effective NL2SQL solutions.

In particular, we believe it is worth exploring whether casting

the harmful content detection problem as a Semantic Mismatch one

(§3.2) can be beneficial. This is because questions containing or ask-

ing to generate harmful content irrelevant (relevant) to the database

can be treated as a semantic mismatch (match) between the question

and the database. In this direction, we run our semantic mismatch

prompt-based techniques on several Microsoft-internal harmful

content detection benchmarks and summarize our major findings.

Our preliminary results indicate that the accuracy of detecting

harmful content improves substantially over common baselines

(i.e., 10%-60% improvements over using ML models designed to

detect harmful content such as Azure AI Content Safety [2] and



NL2SQL is a solved problem... Not! CIDR’24, January 14-17, 2024, Chaminade, USA

adding instructions in the prompt to detect harmful content). Inter-

estingly, combining all techniques (i.e., using ML models, prompt

instructions for detecting harmful content, and semantic mismatch),

we managed to reach a near-perfect accuracy in detecting harmful

content (i.e., 99.6% average accuracy across benchmarks where the

database does not contain harmful content and the questions either

ask to generate or contain harmful content).

Bias. Recently, Liu et al. [19] demonstrated that LLMs can produce

socially biased SQL queries when databases contain user demo-

graphics. Bias in SQL queries can manifest in both direct and in-

direct forms. For example, a question such as "Who should I avoid
giving a loan to?" could lead to the generation of biased queries

like SELECT * FROM Customers WHERE ethnicity=X (direct bias)
or SELECT * FROM Customers WHERE location=Y (indirect bias;

leaning on the correlation of location with specific demographics).

The good news is that bias detection, explanation, and removal

have been active topics of research in the database domain [11,

23, 25]. Extending on this line of research, targeting and optimiz-

ing corresponding techniques for the interactive NL2SQL scenario

represent interesting research directions to ensure that NL2SQL so-

lutions can effectively detect, explain, and mitigate biases—thereby

promoting responsible and fair use of these systems.

Central to many bias detection techniques is the knowledge of

which columns contain demographic information. For instance,

knowing that a column contains race information can guide the

bias detection algorithm when analyzing which columns the query

is filtering on (e.g., race=’X’ means that the query focuses on a

specific subset of the population represented by the underlying

table). Typically, this information is considered as input to bias

detection algorithms. In practice, however, this information is not

present in the database schema. We thus believe that automatically

identifying which columns contain demographics is an important

building step toward addressing bias detection effectively.

As a first step in this direction, we explored whether using LLMs

for detecting columns with demographics can be promising. We use

the schema from the BiaSpider benchmark [19], which is built on

top of the Spider benchmark. In this benchmark, tables related to

humans have been extended with more columns containing demo-

graphics. Such columns with demographics include race, disability,

ethnicity, gender, religion, age, and sexuality. We then asked the

LLM to identify which columns contain demographics using this

benchmark as a gold standard. A naïve approach (zero-shot prompt)

yielded only ~5% accuracy. By incorporating best prompt engineer-

ing strategies (e.g., static few-shot prompting), we managed to

achieve the results shown in Figure 4.

BiaSpider contains three versions for the human-related Spider

tables: v1, v2, and v3. The versions correspond to different numbers

of demographic columns that were added to the human-related

tables. v1 adds 3 demographic columns per human-related table, v2

adds 5, and v3 adds 7. These preliminary results of Figure 4 indicate

that LLMs can infer semantic information (in this case, columns

containing demographics) with high recall and decent precision.

As such, we believe that using LLMs for automatic detection of

semantics suitable for bias detection is an interesting research di-

rection. But, more broadly, using LLMs to extract semantics from

structured data is an important research topic to focus on.

Figure 4: Performance of GPT-3.5 and GPT-4 on detecting
columns with demographics.

Language support. NL2SQL solutions take as input a question

in some language and output SQL queries in a target SQL dialect.

LLMs, however, are known to be low-resource in languages other

than English for several tasks [10, 12, 14, 28]. Our findings on

the NL2SQL task are similar. We translated NL questions in the

KaggleDBQA benchmark using Azure AI Translator [4] in Chi-

nese, Hindi, German, French, and Greek. We observed that NL2SQL

performance (i.e., top-1 execution match) drops on the translated

questions by 3.5%-15%, depending on the language.

In addition, our experiments suggest that LLMs may generate

queries in a SQL dialect (e.g., SQLite-compatible) other than the

target one (e.g., T-SQL). Examples of incompatibilities when the

target is T-SQL include setting LIMIT clauses as opposed to TOP

ones or text in double quotes, which are interpreted as string literals

in SQLite but (by default) as column names in T-SQL. In particular,

when running our internal NL2SQL solutions on a KaggleDBQA

benchmark, we observed ~6% of completions to have such incompat-

ibilities after translating the benchmark to be T-SQL specific. To this

extent, we believe continuously experimenting with language sup-

port from LLMs, detecting and potentially blocking low-resource

languages, improving LLM completions (either through training,

fine-tuning, or better prompting), and repairing LLM completions

to improve language support are interesting research directions.

Unintended effects. Letting NL2SQL generate and execute queries
at the request of user inputs can lead to database state modifica-

tion (e.g., through the generation of CRUD statements). Based on

customer feedback, this can be concerning in multiple scenarios, es-

pecially when considering the ambiguity of user intent (e.g., asking

“purge operations in the last hour” results in deleting the records in

operations table from the last hour, instead of returning records

from operationswith operations.action = ‘purge’ in the last

hour). As such, NL2SQL solutions need to likely be constrained

on what their output statement types can be (e.g., allow only SE-

LECT queries without side effects on the database) or what they

can execute (e.g., execute queries through roles with READ-only

privileges). Blocking queries by type or through role-based data-

base access, however, can be very restrictive. For instance, a data

scientist may want to use the generative power of LLMs to generate

and insert examples in a new table (to start prototyping). As such,

enabling NL2SQL solutions to avoid unintended side effects while

not limiting experiences is an interesting research direction. In this

direction, we believe existing database research and practice can

be critical. For instance, one could allow NL2SQL to execute any



CIDR’24, January 14-17, 2024, Chaminade, USA Floratou and Psallidas, et al.

statement type but do so either within transactions that neither

commit (blocking transaction statement types like ROLLBACK, and

disabling isolation levels like READ UNCOMMITTED to avoid op-

posite effects) or using either time-travel or branching if supported

by the underlying database system.

Governance. Expanding upon the discussion on RAI above, NL2SQL
solutions must seamlessly integrate with governance platforms (e.g.,

Microsoft Purview [7] or Microsoft Fabric Governance [6]). Users of

these platforms, such as auditors or database administrators, should

be able to comprehend the inputs and outputs of NL2SQL solutions,

as well as the corresponding actions they undertake. They should

also be able to identify root causes that may involve NL2SQL actions

throughout the data estate (e.g., a reporting tool failed to update

because NL2SQL executed an ALTER statement that modified the

database schema accessed by the report), ascertain the repercus-

sions of NL2SQL actions on various elements within the enterprise

data ecosystem (e.g., datasets, processes, databases, or services),

retain the flexibility to reverse operations, and generate insightful

reports stemming from their utilization of NL2SQL solutions. At the

same time, NL2SQL solutions must adhere to policies established

within governance platforms or leverage contextual information

available in these platforms (e.g., metadata, provenance, or business

glossaries) to enhance the quality of NL2SQL interactions.

6 CONCLUSIONS
This paper argues that delivering enterprise-grade NL2SQL remains

a formidable and unsolved challenge. By delving into various un-

resolved issues within this domain, our objective is to stimulate

constructive discourse within our community, ultimately inspiring

further academic and industrial research on crucial topics such as

dealing with complex schemata, handling ambiguity, re-thinking

our benchmarking methodology, and ensuring responsible AI.

REFERENCES
[1] 2022. OpenAI pricing. https://openai.com/pricing.

[2] 2023. AI Content Safety. https://learn.microsoft.com/en-us/azure/ai-services/

content-safety.

[3] 2023. Archerfish benchmarking framework. https://github.com/archerfish-

bench.

[4] 2023. Azure AI Translator. https://learn.microsoft.com/en-us/azure/ai-services/

translator/text-translation-overview.

[5] 2023. Microsoft Copilot. https://copilot.microsoft.com.

[6] 2023. Microsoft Fabric Governance. https://learn.microsoft.com/en-us/fabric/

governance/.

[7] 2023. Microsoft Purview. https://learn.microsoft.com/en-us/purview/purview.

[8] 2023. OpenAI GPT-4. https://openai.com/research/gpt-4.

[9] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases.
Vol. 8. Addison-Wesley Reading.

[10] Kabir Ahuja, Harshita Diddee, Rishav Hada, Millicent Ochieng, Krithika Ramesh,

Prachi Jain, Akshay Nambi, Tanuja Ganu, Sameer Segal, Maxamed Axmed, Kalika

Bali, and Sunayana Sitaram. 2023. MEGA: Multilingual Evaluation of Generative

AI. arXiv:2303.12528 [cs.CL]

[11] Agathe Balayn, Christoph Lofi, and Geert-Jan Houben. 2021. Managing Bias

and Unfairness in Data for Decision Support: A Survey of Machine Learning

and Data Engineering Approaches to Identify and Mitigate Bias and Unfairness

within Data Management and Analytics Systems. The VLDB Journal 30, 5 (may

2021), 739–768. https://doi.org/10.1007/s00778-021-00671-8

[12] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan

Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,

and Pascale Fung. 2023. A Multitask, Multilingual, Multimodal Evaluation of

ChatGPT on Reasoning, Hallucination, and Interactivity. arXiv:2302.04023 [cs.CL]

[13] Jailbreak Chat [n. d.]. Jailbreak Chat. Retrieved Jul 31, 2023 from https://www.

jailbreakchat.com/

[14] Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben Veyseh, Hieu Man, Franck

Dernoncourt, Trung Bui, and Thien Huu Nguyen. 2023. ChatGPT Beyond English:

Towards a Comprehensive Evaluation of Large Language Models in Multilingual

Learning. arXiv:2304.05613 [cs.CL]

[15] Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. 2021. KaggleD-

BQA: Realistic evaluation of text-to-SQL parsers. arXiv preprint arXiv:2106.11455
(2021).

[16] Fei Li and Hosagrahar V Jagadish. 2014. NaLIR: An Interactive Natural Lan-

guage Interface for Querying Relational Databases. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,

709–712. https://doi.org/10.1145/2588555.2594519

[17] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang,

Bowen Qin, Rongyu Cao, Ruiying Geng, Nan Huo, Chenhao Ma, Kevin C. C.

Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023. Can LLM Already

Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded

Text-to-SQLs. arXiv:2305.03111 [cs.CL]

[18] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,

Fabio Petroni, and Percy Liang. 2023. Lost in the Middle: How Language Models

Use Long Contexts. arXiv:2307.03172 [cs.CL]

[19] Yan Liu, Yan Gao, Zhe Su, Xiaokang Chen, Elliott Ash, and Jian-Guang Lou.

2023. Uncovering and Categorizing Social Biases in Text-to-SQL. arXiv preprint
arXiv:2305.16253 (2023).

[20] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to Information Retrieval. Cambridge University Press. http://nlp.stanford.

edu/IR-book/

[21] Todor Markov, Chong Zhang, Sandhini Agarwal, Florentine Eloundou Nekoul,

Theodore Lee, Steven Adler, Angela Jiang, and Lilian Weng. 2023. A holistic

approach to undesired content detection in the real world. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 37. 15009–15018.

[22] Simone Papicchio, Paolo Papotti, and Luca Cagliero. 2023. QATCH: Benchmarking

SQL-centric tasks with Table Representation Learning Models on Your Data. In

Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track. https://openreview.net/forum?id=XOpaPrb0U5

[23] Romila Pradhan, Jiongli Zhu, Boris Glavic, and Babak Salimi. 2022. Interpretable

Data-Based Explanations for Fairness Debugging. In Proceedings of the 2022
International Conference onManagement of Data (Philadelphia, PA, USA) (SIGMOD
’22). Association for Computing Machinery, New York, NY, USA, 247–261.

[24] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq

Minhas, Ashish R. Mittal, and Fatma Özcan. 2016. ATHENA: An Ontology-Driven

System for Natural Language Querying over Relational Data Stores. Proc. VLDB
Endow. 9, 12 (aug 2016), 1209–1220. https://doi.org/10.14778/2994509.2994536

[25] Babak Salimi, Johannes Gehrke, and Dan Suciu. 2018. Bias in OLAP Queries:

Detection, Explanation, and Removal. In Proceedings of the 2018 International
Conference onManagement of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 1021–1035.

[26] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi

Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-

narayanan. 2020. ATHENA++: Natural Language Querying for Complex Nested

SQL Queries. Proc. VLDB Endow. 13, 12 (jul 2020), 2747–2759.
[27] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James

Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale

human-labeled dataset for complex and cross-domain semantic parsing and

text-to-sql task. arXiv preprint arXiv:1809.08887 (2018).

[28] Wenxuan Zhang, Sharifah Mahani Aljunied, Chang Gao, Yew Ken Chia, and

Lidong Bing. 2023. M3Exam: A Multilingual, Multimodal, Multilevel Benchmark

for Examining Large Language Models. arXiv:2306.05179 [cs.CL]

[29] Qi Zhou et al. 2022. SPES: A Symbolic Approach to Proving Query Equivalence

Under Bag Semantics. In 2022 ICDE. 2735–2748.
[30] Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. 2023. Uni-

versal and Transferable Adversarial Attacks on Aligned Language Models.

arXiv:2307.15043 [cs.CL]

https://openai.com/pricing
https://learn.microsoft.com/en-us/azure/ai-services/content-safety
https://learn.microsoft.com/en-us/azure/ai-services/content-safety
https://github.com/archerfish-bench
https://github.com/archerfish-bench
https://learn.microsoft.com/en-us/azure/ai-services/translator/text-translation-overview
https://learn.microsoft.com/en-us/azure/ai-services/translator/text-translation-overview
https://copilot.microsoft.com
https://learn.microsoft.com/en-us/fabric/governance/
https://learn.microsoft.com/en-us/fabric/governance/
https://learn.microsoft.com/en-us/purview/purview
https://openai.com/research/gpt-4
https://arxiv.org/abs/2303.12528
https://doi.org/10.1007/s00778-021-00671-8
https://arxiv.org/abs/2302.04023
https://www.jailbreakchat.com/
https://www.jailbreakchat.com/
https://arxiv.org/abs/2304.05613
https://doi.org/10.1145/2588555.2594519
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2307.03172
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
https://openreview.net/forum?id=XOpaPrb0U5
https://doi.org/10.14778/2994509.2994536
https://arxiv.org/abs/2306.05179
https://arxiv.org/abs/2307.15043

	Abstract
	1 Introduction
	2 Schema complexity
	3 Ambiguity and Semantic Mismatch
	3.1 Ambiguity
	3.2 Semantic Mismatch

	4 Benchmarking
	4.1 Archerfish Benchmarking Framework

	5 Responsible AI
	6 Conclusions
	References

