
Welding Natural LanguageQueries to Analytics IRs with LLMs
Kaushik Rajan
Microsoft Research
Redmond, USA

Aseem Rastogi
Microsoft Research
Bangalore, India

Akash Lal
Microsoft Research
Bangalore, India

Sampath Rajendra
Microsoft Research
Bangalore, India

Krithika Subramanian
Microsoft Azure Data

Bangalore, India

Krut Patel∗
University of Illinois
Urbana-Champaign
Urbana, IL, USA

ABSTRACT

From the recent momentum behind translating natural language to
SQL (nl2sql), to commercial product offerings such as Co-Pilot for
Microsoft Fabric, Large Language Models (LLMs) are poised to have
a big impact on data analytics. In this paper, we show that LLMs
can be used to convert natural language analytics queries directly
to custom intermediate query representations (IRs) of modern data
analytics systems. This has the direct benefit of making IRs more
accessible to end-users, but interestingly, it can also result in im-
proved translation accuracy and better end-to-end performance,
especially when the query semantics is better captured in the IR
rather than in SQL. We build an LLM-based pipeline (nl2weld) for
one instance of this flow, to translate natural language queries to the
Weld IR using gpt-4. nl2weld is carefully designed to harness self-
reflection and instruction-following capabilities of gpt-4, providing
it various forms of feedback such as domain specific instructions
and feedback from the Weld compiler. We evaluate nl2weld on a
subset of the Spider benchmark and compare it against the gold
standard SQL and DIN-SQL, a state-of-the-art nl2sql system. We
report a comparable accuracy of 77.4% on the dataset, and also
demonstrate examples on which nl2weld produces code that is
1.2 − 3× faster than the gold standard and DIN-SQL.

1 INTRODUCTION

Pre-trained Large Language Models (LLMs) have shown impressive
emergent capabilities of generating code from natural language [4].
Such capabilities are poised to disrupt the software engineering
industry [5], by making it practical to have natural language-based
frontends accessible even to non-experts. Data analytics systems
are also picking up on the trend. The task of translating natural
language queries to SQL (nl2sql) has gained traction, with several
high-accuracy translation methods [6, 22] as well as commercial
product announcements, such as Co-Pilot for Microsoft Fabric [17].

In addition to leveraging LLM capabilities, nl2sql also has the
advantage of keeping the SQL query close to its natural language
intent. However, is SQL always the right target to capture this
intent? One can attempt similar variants that instead target other
popular data analytics frameworks [11] from the PyData stack such
∗Work done while working at Microsoft Research.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2024. 14th Annual Conference on
Innovative Data Systems Research (CIDR ’24). TODO, Chaminade, USA

as numPy and Pandas. However, instead of stopping there, this
paper takes the argument one step further and argues for building
translations that directly target the intermediate representations
(IRs) of modern database systems.

Several recent analytics platforms [7–10, 12, 14, 18–21] have
designed and advocated for domain-specific IRs. These IRs are
supported by a compilation pipeline to generate efficient executable
code. The reach of these IRs has, however, been limited because
they remain internal to the platforms, with no expectation of a user
directly programming in the IR. This limitation also imposes an
implicit burden on the IR designer—they must develop a complete
frontend for translating SQL (or other user-facing interfaces) to
the IR. We argue that these IRs, which are programming languages
in their own right, form a rich playground for database research,
specifically for directly capturing a user’s natural-language-based
intent in the IR—a task that we call nl2ir.

This paper presents nl2weld, an instance of nl2ir where we
use the state-of-the-art LLM gpt-4 to translate natural language to
Weld [19, 20], a simple and concise analytics IR based on linear data-
structures. Weld has syntax similar to that of a functional language,
much like Rust. We demonstrate examples of data-analytics queries
where the intent is better captured in Weld than in SQL. The fact
that each such IR will be better than SQL at capturing user intent
for some set of queries should not be surprising. Our work should
be taken as evidence that nl2ir is a useful generalization of nl2sql
that will benefit users of data analytics in the long term.

This paper answers key technical challenges required for real-
izing nl2ir. For instance, the popularity of SQL implies that pre-
trained models would already be proficient with its syntax. This is
certainly not true for Weld, and would be the case for any new IR.
One option would be to invest in fine-tuning of models with lots
of code in the IR. This would be expensive and time-consuming,
and would be a big hurdle to realize nl2ir. We demonstrate that
by leveraging the instruction-following capabilities of LLMs, fine-
tuning is not required. We describe all the features of Weld in a
single prompt and instruct the LLM to follow the rules of the syntax.
We show that gpt-4 is good at following such instructions.

Even with these instructions, we find that the zero-shot perfor-
mance of gpt-4 for nl2ir significantly lags nl2sql. We demonstrate
the design of a prompting-based pipeline that closes this gap. In
particular, nl2weld uses self-reflection capabilities of gpt-4 to let
it fix logical errors in the generated code. We use gpt-4 to also fix
syntax and typing errors in its code, by feeding it compilation errors
as reported by the Weld compiler. Lastly, to increase the chances

CIDR’24, January 14-17, 2024, Chaminade, USA Kaushik Rajan, Aseem Rastogi, Akash Lal, Sampath Rajendra, Krithika Subramanian, and Krut Patel

of producing valid Weld code, we ask gpt-4 to generate multiple
programs per query and apply the above pipeline to each of them.

We evaluate nl2weld on four evaluation (dev) databases from
Spider, a standard nl2sql benchmark suite [3]. Results indicate
that nl2weld has comparable accuracy to state-of-the-art nl2sql
systems. nl2weld achieves an accuracy of 58.6% with one comple-
tion, and when configured to return multiple completions it attains
an accuracy of 77.4%. On these databases DIN-SQL, the leading
nl2sql system on Spider, achieves an accuracy of 71.6% with one
completion (DIN-SQL does not use multiple completions). These
numbers indicate that while the models are more proficient at gen-
erating SQL by default, using multiple completions, self-reflection,
and complier feedback can close this gap. Further, we find that our
system sometimes produces code that runs faster than (1.2 − 3×) a
Weld translation of the query plan for gold standard SQL queries
in the benchmark suite1.

In summary, this paper makes the following contributions.
(1) We formulate the nl2ir problem that aims to directly capture

natural-language intent in the sea of data-analytics IRs.
(2) We build and evaluate nl2weld, a novel system for nl2ir

based on the Weld language. The system crucially relies
on LLM capabilities to follow instructions (to encode Weld
syntax), as well as self-reflect (on logical errors) and self-fix
compilation errors to improve overall accuracy.

(3) We demonstrate that nl2weld can achieve a comparable
translation accuracy to nl2sql, solving more problems in the
hardest category, and can produce more efficient programs.

2 MOTIVATING EXAMPLE

This section present an example query from the Spider benchmark
and contrasts its SQL representation against a Weld representation.

Weld IR. Weld [19, 20] is a functional language designed for high
performance data analytics. In addition to basic data types and
closures (written as |bs| e, where bs are the binders and e is the
closure body), Weld supports immutable structs and immutable col-
lections such as vectors and dictionaries. The key construct of Weld
is an abstraction called builders that provide write-only, build-once
abstractions for creating collections. Builders support three opera-
tions: merge(b,v) for merging a new value into a builder, result(b) for
converting a builder into an immutable collection, and for(v,b,f), a
looping combinator that folds a builder-returning function f over
the vector v, and returns the final builder (b is the initial builder
that the loop starts with).

For example, dictmerger is a builder type for dictionaries. It is
initialized with the constructor dictmerger(k,v,id,f), where k and v
are the key and the value type respectively, id is the identity for v,
and f is a binary function to combine the previous value of a key
(if it exists) with the new value of the key, when the dictmerger is
updated with merge. Invoking result(b) on a dictmerger converts it
to a dictionary. An optlookup(d, k) returns a struct value {b, v}, where
b is a boolean indicating whether k exists in the dictionary d, and
v is the value of k in d when b is true. Weld imposes a linear type
system [24] to ensure that the builders are used exactly once. This

1We enhance the sample databases in the benchmark suite with a data generator that
preserves the column distributions and key constraints. More on this in Section 4.

allows the compiler to soundly generate low-level code that mutates
the builders in-place and makes result essentially a no-op.

We have added a few basic features to the original Weld lan-
guage [19, 20] that are relevant for nl2ir. For example, the original
Weld supported only fixed set of binary operations (addition, max-
imum, etc.) as the binary function in dictmerger. We extended it
to support custom closures, written as |x, y| e where x and y are
the closure parameters and e is the closure body. This increases
the expressiveness of the language and allows efficient query im-
plementations. We have also improved the Weld parser and the
typechecker to implement missing checks and report better error
messages; this enables us to use gpt-4 for fixing syntax and typing
errors.

Example query. One of the queries in the Spider benchmark [3],
“find all students that have both dogs and cats as pets”, operates
over three tables Pets, Students, and Has_pet, where the last table
contains pairs of students and pet ids. Figure 1 shows the gold
standard SQL representation of the query from the dataset. The
query computes two different sets of students, those with cats and
those with dogs (each with a 3-way Join), and then interesects the
results. The optimized plan also perform two 3-way joins, scanning
each table twice.

Figure 2 shows the Weld IR for the same query as generated by
our nl2ir pipeline. The code, as presented, compiles with the Weld
compiler and passes the testcases from the dataset. It also crucially
relies on our Weld enhancement for custom closure support in
dictmerger. The program takes the 3 tables as inputs, each repre-
sented as a vector of structs, and iterates over each of them exactly
once. It first iterates over the pets table and creates a dictionary
that maps pet id to pet type (lines 2-4). The dictionary is created
using a dictmerger, populated inside a for loop, finally converted to
a dictionary using result.

The program then iterates over the has_pet table and creates a
second dictionary that maps student id to a struct of two booleans,
indicating whether the student has at least one cat and one dog,
respectively, (lines 6-10). The binary function in the dictmerger con-
structor takes boolean or (||) of the corresponding struct fields. This
step uses the dictionary from the previous step to lookup the pet
type. Finally, the program iterates over the student table and creates
a vector of their first names when both the fields in the correspond-
ing value in the dictionary from the previous step are true.

This Weld code avoids performing the same set of joins twice.
Writing similar code in SQL would require using advance features
like user-defined-aggregation functions or complex case-when ex-
pressions that most nl2sql systems struggle with today [13, 22].
Such rewrites are also beyond the scope of existing query optimiz-
ers [15]. As we show in Section 4, the Weld IR is roughly 1.5x faster
than the gold standard SQL for this query.

3 NL2WELD PIPELINE

Figure 3 illustrates the architecture of nl2weld, our multi-agent
LLM-based pipeline for solving the nl2ir problem for the Weld
language. Each of the green shaded boxes are calls to an LLM, which
is always gpt-4 in our implementation. We use a conversational
interface to gpt-4, where each conversation consists of a single

Welding Natural LanguageQueries to Analytics IRs with LLMs CIDR’24, January 14-17, 2024, Chaminade, USA

1 SELECT T1.Fname FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid=T2.stuid JOIN pets AS T3 ON T3.petid=T2.petid WHERE T3.pettype='cat'
2 INTERSECT
3 SELECT T1.Fname FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid=T2.stuid JOIN pets AS T3 ON T3.petid=T2.petid WHERE T3.pettype='dog'

Figure 1: SQL gold standard for the query "find all students that have both cats and dogs as pets"

1 |student:vec[{student_id:int, first_name:str,...}], has_pet:vec[{student_id:int, pet_id:int}], pets:vec[{pet_id:int, pet_type:str,...}]|
2 (∗ Step 1: Create a dictionary for pets with pet_id as the key and pet_type as the value ∗)

3 let pets_dict = for (pets, dictmerger[int, str, |agg, curr| curr,""], |b, _, e| merge(b, {e.pet_id, e.pet_type}));
4 let pets_dict_res = result pets_dict;
5 (∗ Step 2: Iterate over has_pet and find students who have both cats and dogs ∗)

6 let students_with_both_pets = for (has_pet, dictmerger[int, {bool, bool}, |agg, curr| {agg.$0 || curr.$0, agg.$1 || curr.$1}, {false, false}], |b, _, e|
7 let pet_type = optlookup (pets_dict_res, e.pet_id);
8 if (pet_type.$0, merge (b, {e.student_id, {pet_type.$1 == "cat", pet_type.$1 == "dog"}}), b)
9);
10 let students_with_both_pets_res = result students_with_both_pets;
11 (∗ Step 3: Iterate over the students and output the first names of students who have both cats and dogs ∗)

12 let final_output = for (student, appender[str], |b, _, e|
13 let student_pets = optlookup (students_with_both_pets_res,e.student_id);
14 if (student_pets.$0 && student_pets.$1.$0 && student_pets.$1.$1, merge (b, e.$1), b)
15);
16 result final_output

Figure 2: nl2ir-generated Weld IR for the query "find all students that have both cats and dogs as pets"

Generative agent

Self-reflect agent

Parser & Type checker

𝑃0

Query
(natural language)

𝑄

Self-fix agent

𝑄

𝑃1

𝑃𝑗,𝐸𝑟𝑟𝑜𝑟

𝑃𝑗+

Weld Spec
10 rules (types and

expressions),
6 example programs

DB Spec
Tables with Schema,

PK-FK relations,
sample rows

Figure 3: A multi-agent LLM-based nl2ir pipeline.

system prompt that is supplied initially to constrain the entire con-
versation, followed by a sequence of one or more user prompts that
each ask for a response.

The specification of the Weld language is supplied as part of the
system prompt to inform the model about the features of the lan-
guage (details later in this section). The system prompt further also

includes details about the schemas of all the tables in the database,
with the names of any primary-key columns, primary-key/foreign-
key (PK-FK) relations between the tables.We also optionally provide
a table size hint (small, medium, large) and one or two sample in-
put rows per table. Figure 18 in Appendex shows the complete
specification for one of the databases used for evaluation.

Once the system prompt is initialized, nl2weld uses three dif-
ferent agents that each supply user prompts as part of the same
conversation. The first agent (generative agent) takes the input nat-
ural language query 𝑄 and simply asks for a Weld implementation
of the query (𝑃0). The second agent (self-reflection agent) takes in-
spiration from prior work [22] to perform self-reflection, where
we ask gpt-4 to check if 𝑃0 incorrectly implements 𝑄? (We find
that asking gpt-4 to identify if the program is incorrect is more
useful than asking if the program is correct.) Figure 4 shows the
complete prompt and an example of self reflection. As can be seen
gpt-4 responds with a fixed program and adds detailed comments
to the program 𝑃1. These comments can help a user understand the
Weld code. (This is why Figure 2 has comments.)

Finally, in the last stage of the nl2weld (self-fix agent), we run
the Weld compiler to check for parsing and typing errors. If any er-
rors are reported, the error message is supplied to the model, along
with the erroneous program and we ask it to fix the particular error.
Figure 5 shows an example of self-fixing. This process is repeated
until we get a program that passes the compiler; the number of
retries is bounded to 3, after which nl2weld reports a failure. Fig-
ures 19— 21 in the Appendix show a complete end-to-end example
that includes all the prompts and responses received.

CIDR’24, January 14-17, 2024, Chaminade, USA Kaushik Rajan, Aseem Rastogi, Akash Lal, Sampath Rajendra, Krithika Subramanian, and Krut Patel

gpt-4 Prompt:

Given a query and a Weld program that is supposed to implement
the query, check if the program is logically incorrect or if it does
not follow the rules of the language. Produce the correct program
and add detailed comments justifying its correctness.
Query: ...
Program:

|airlines:vec[{airline_id:i32, airline_name:str, ...}]|
let count_airlines = COUNT_i32 (airlines.airline_id);
count_airlines

gpt-4 Response:

The original program does not follow the rules of Weld as it
directly uses COUNT_i32 on airlines.airline_id without iterating
over the input vector. The corrected program below uses a for
loop to iterate over the input vector and appends the airline_id to
an appender collection, calls result and uses COUNT_i32 to count
the number of airline_id.

|airlines:vec[{airline_id:i32, airline_name:str, ...}]|
let count_airlines = for (airlines, appender[i32],

|b, _, e| merge (b, e.airline_id));
let total_airlines = COUNT_i32 (result count_airlines);
total_airlines

Figure 4: Example of self-reflection: COUNT_i32 is a Weld

macro that expects a vector of type vec[i32] as argument.

gpt-4 Prompt:

GivenWeld program and a compiler error in the program, produce
the fixed Weld program. Program:

for (student, dictmerger[i32, str, |agg, curr| curr], |dm, i, st| ...)

Compiler error: Expected ’,’ before lambda identity value, got ']'.
Perhaps you are using reduction functions incorrectly.

gpt-4 Response:

for (student, dictmerger[i32, str, |agg, curr| curr, ""], |dm, i, st| ...)

Figure 5: Example of self-fixing: the dictmerger declaration
expects as additional argument (the identity value).

Weld-in-a-prompt. The crucial aspect of nl2ir is to ensure that
the LLM understands the IR. One cannot expect a pre-trained model
to be updated as frequently as an IR is updated. We found that while
gpt-4 had some understanding of Weld, it certainly did not know
enough details to output correct Weld programs. We expect that our
methodology can be used for any IR that is concise, well-defined,

This document describes my own programming language L with a set of
rules. L supports a few scalar and a few collection types. The types and
operations can be performed on them are described below.
S1. Basic variable b:bt, has a standard basic type
bt ::= bool | i8 | i64 | f64 | str. On these types L supports basic expres-
sions, type casts, for example, i32(b), if(cond,then expr, else expr).
Note that variables passed to expressions should have compatible types.
S2. Struct variable s:st, has a struct type st::=bt | (st,bt). The fields of the
structure can be named or can be accessed via positional identifiers starting
with $0.

Figure 6: Specifying commonWeld features in a prompt

and has a small number of key combinators. Weld satisfies these
requirements.

The Weld “encoding” consists of four main components: (𝑎)
description of features that Weld has in common with other func-
tional languages (basic data types, let, conditionals, structs), (𝑏)
description of Weld-specific abstractions (builders and loops), (𝑐) a
few small example Weld programs along with a natural language
description of the task that they accomplish, and (𝑑) instructions
for how to encode commonly occurring patterns in data analytics
into Weld combinators. We look at each of these components next.

Common features. These instructions are straightforward and
specify the basic data types, conditionals, structs etc. Figure 6 shows
a snippet of our gpt-4 prompt for the same, where we abstractly
refer to Weld as the language 𝐿 so that the model does not pick up
its implicit bias for Weld.

A dictmerger collection dr:dictmerger(key:st,value:st,redFn) has a dic-
tionary type, that represents key value pairs where keys and values can
themselves be basic types or structs of basic types. In addition it takes a
reduction function redFn, of the form |agg:st,curr:st|→(e). Where agg is
the current value in the dictmerger and curr is a new value to be folded
into agg. e is an expression that evaluates the new agg that has been
updated with curr. The identity struct contains the initial values for each
element in the agg struct. dr supports the following operations. The full
types of dictmerger variables and the complete redFn should be explicitly
defined.
(a) dr supports an optlookup function.
(flag:bool,v:st) = optlookup(dr,k:st) produces flag:=True
only if the key k exists in the dictionary, and when flag is true, v contains
the value in the dictionary.

(b) It supports a merge functionmerge(dr,k:st,v:st). The merge function
dr.merge(k,v) checks if the key k already exists and if so updates the
current value v with the new value by applying comOp. Note that the
keys of a dictionary are to be unique.

(c) dr can be converted into a vector with let v =tovec(dr).
(d) dr supports a result function result(dr). It is required that result()
be called before any calls to optlookup ortovec and thatmerge is not
called after result.

Figure 7: Specifying dictmerger in a prompt

Weld-specific abstractions. We follow the methodology of specify-
ing novel language abstractions using concepts that would already
be familiar to the model. For instance, we describe builders as col-
lections, with specialized syntax for their construction and use.

Welding Natural LanguageQueries to Analytics IRs with LLMs CIDR’24, January 14-17, 2024, Chaminade, USA

Figure 7 shows the prompt snippet for specifying dictmerger. The
complete prompt can be found in Figure 14 in the Appendix.

Small examples. This section of the prompt consists of natural
language description of small data analytics queries, and their cor-
responding Weld programs. All examples used in the prompt can
be found in Figures 15 — 17 in the Appendix.

Domain-specific instructions. This is the final section of the
prompt where we encode domain-specific instructions for writing
Weld programs for SQL-like data analytics queries. These instruc-
tions encode common optimizations such as filter pushdown, etc.
Figure 8 shows a partial snippet from our gpt-4 prompt.

For efficiency reasons you should:
(1) make use of dictmerger to aggregate values per key, or maintain a
mapping from a primary key to values. Make sure you use an appropriate
reduction function.
(2) combine multiple vectors by inserting the smaller table into a
groupmerger or a dictmerger and look it up while iterating over the
larger one. A dictmerger should be preferred if the key is the primary key
of a table.
(3) apply filters as early as possible, preferably during the first pass on an
input vector.
(4) create collections with as few columns as possible. Only columns that
are used subsequently should be in the collection.
(5) Iterate over input tables as few times as possible. In general programs
with fewer loops and no nesting are preferred.

Figure 8: Specifying domain-specific insights in a prompt

4 EVALUATION

We evaluate nl2weld on the Spider dataset [3] that has been widely
used for nl2sql benchmarking. It consists of 20 (dev) databases,
among which we pick 4: 𝑝𝑒𝑡𝑠_1, 𝑓 𝑙𝑖𝑔ℎ𝑡_2, 𝑠𝑖𝑛𝑔𝑒𝑟 , and 𝑛𝑒𝑡𝑤𝑜𝑟𝑘_1
for our experiments because our access to gpt-4 was limited at the
time of writing this paper. These are some of the more challenging
databases for nl2sql.They together have a total of 208 queries. We
consider both translation accuracy as well as query performance in
our evaluation.

Accuracy captures how often the generated Weld matches the
golden SQL query. We use execution accuracy as the metric for
accuracy, i.e., we run the queries on the provided databases and
check equivalence of the results; the exact match metric of Spider
is not relevant because the benchmark suite does not have golden
Weld queries. Further, we report 𝑝𝑎𝑠𝑠@𝑘 accuracy, which refers to
running nl2weld for a total of 𝑘 times and checking if any of the
Weld output matches the golden SQL on execution accuracy. We
compare our results with DIN-SQL [22], the nl2sql system with
the current highest official execution accuracy on Spider. DIN-SQL
also uses gpt-4.

Performance. The goal of the performance evaluation is to
determine if nl2weld generated IRs are more efficient than what
can be achieved by a direct translation of the SQL query to the IR.
To perform this comparison we take the gold standard SQL query,
generate a query plan for it using a state-of-the-art query optimizer,

and translate the optimized plan into Weld IR2. To generate the
plans we use duckDB [23], a popular open-source query engine
widely used for performance comparisons [8, 12]. For completeness,
we compare not just with the (IR corresponding to) gold standard
query in the benchmark, but also DIN-SQL generated SQL query.

The datasets used for correctness evaluation in the benchmark
are too small (10s of rows) to be used for performance evaluation.
We, therefore, make use of a synthetic data-generator [2] that given
a schema, constraints, distribution of values and size information,
can generate synthetic data that preserves the constraints and distri-
butions. We evaluate performance on the 𝑝𝑒𝑡𝑠_1 database3. We use
latency of a single-threaded execution as themetric for performance.
We extended the Weld runtime to execute the IRs as generated with
inputs being read via an in-memory table reader [1].

4.1 Accuracy

As reported in Figure 9, we achieve a pass@1 accuracy of 58.6%
and a peak accuracy of 77.4%. Accuracy remains at this level for 𝑘
in the range 3 − 8. In comparison, DIN-SQL has a pass@1 accuracy
of 71.6%. They do not generate multiple completions.

Figure 10 provides a breakdown of accuracy for each database
and hardness category, based on ease of expressing the compu-
tation in SQL. The comparison of results per hardness category
against DIN-SQL is interesting. While both solve the same set of
easy queries, they differ in their ability to solve other categories.
This is because of the difference in expressiveness between SQL
and Weld. For example, the benchmark categorizes SQL queries
that use nesting and make use of set operators (𝑖𝑛, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡, 𝑒𝑥𝑖𝑠𝑡𝑠)
as extra hard. Weld does not have these notions, it directly en-
codes the query using dictionaries and vectors, the data-structures
used internally by databases to implement physical operators. This
demonstrates that some tasks that are hard for nl2sql could, in
fact, be easier for nl2ir. We find that nl2weld solves 36 queries
(7 extra hard) that DIN-SQL fails on, while DIN-SQL solves 24 (4
extra-hard) queries that nl2weld fails on. The accuracy reaches
88.9% if we combine DIN-SQL together with nl2weld!

Ablations. Figure 11 shows the impact on accuracy of removing
some components from the system. As can be seen, removing self-
fix has a significant impact, halving the accuracy on two databases
and reducing the overall accuracy by 28%. Our prompts have limited
program examples, so the model tends to make syntactic mistakes.
Feedback from the compiler is critical for the model to fix such
errors. Removing self-reflect (Figure 4) or domain specific instructions
(Figure 8), has a lower but still non-negligible impact.

4.2 Cost of using the LLM pipeline

nl2weld requires multiple rounds of interaction with gpt-4 per
query: an initial generation, self-reflect and then up to three self-fix
passes.We find that, on average, one completion requires about 8700
input tokens (worst case 17850) and 1460 (worst case 4550) output
tokens. At current pricing of OpenAI endpoints4, this translates to

2We do this translation while adhering to the same domain-specific guidelines that we
provide to the LLM.
3With table sizes 2𝑀, 10𝑀, 5𝑀 rows for 𝑝𝑒𝑡𝑠, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠,ℎ𝑎𝑠_𝑝𝑒𝑡 , and column value
distributions being either from fixed set (low cardinality columns) or Gaussian.
4See pricing for the model gpt-4 here: https://openai.com/pricing

https://openai.com/pricing

CIDR’24, January 14-17, 2024, Chaminade, USA Kaushik Rajan, Aseem Rastogi, Akash Lal, Sampath Rajendra, Krithika Subramanian, and Krut Patel

0

20

40

60

80

100

1 2 3 4 5 6 7 8

pa
ss

@
k

ac
cu

ra
cy

k

NL2WELD

DIN_SQL

Figure 9: Pass@k

nl2weld DIN-
Pets network singer flights all(%) SQL(%)

Easy 4/4 11/12 6/6 22/26 89.5 89.5
Med 17/22 20/22 18/18 25/30 86.9 69.5
Hard 5/6 8/16 1/6 5/8 52.7 72.2
Extra 8/10 3/6 0/0 8/16 59.4 50.0
per DB 34/42 42/56 25/30 60/80 77.4 71.6
DIN

SQL(%) 33/42 38/56 21/30 57/80 71.6 -

Figure 10: Accuracy breakdown

0

20

40

60

80

100

pets network singer flights all-db

ac
cu

ra
cy

 (
p

as
s@

6
)

all w/o domain w/o self-reflect w/o self-fix

Figure 11: Ablations

an average cost of $0.37 (USD) (worst case $0.80) per completion.
The cost scales linearly with the number of completions requested.

OpenAI API allows for the generation of multiple completions
in a single gpt-4 request, however our client did not use this setting
as the token count would exceed the 4K token limit that the model
had at the time of evaluation. gpt-4 also supports 32K token limit
now, and that is enough to generate all the completions in one pass
of the pipeline. Using this option should bring down the cost per
completion by at least half for getting three completions.

0

500

1000

1500

2000

2500

3000

3500

 m
ed

iu
m

 m
ed

iu
m

 m
ed

iu
m

 m
ed

iu
m

 m
ed

iu
m

 m
ed

iu
m

 h
ar

d

 h
ar

d

 h
ar

d

 h
ar

d

 e
xt

ra

 e
xt

ra

 e
xt

ra

 e
xt

ra

 e
xt

ra

33 34 35 36 37 38 9 10 19 20 15 16 17 18 21

TI
M

E(
M

S)

NL2WELD NL2WELD (w/o domain) goldSQL in WELD DIN-SQL in WELD

NL2SQL
FAILED

Figure 12: Performance comparison of nl2weld vs. SQL. The

plot shows the performance of nl2weld generated IRs with

and without domain instructions, against the gold standard

SQL query translated toWeld, as well the DIN-SQL generated

query translated to Weld. The plot only shows queries where

there is a performance difference. For other queries the per-

formance is identical and hence not reported.

4.3 Performance evaluation

Figure 12 reports the performance of running the IR correspond-
ing to the gold standard SQL query and the nl2weld generated IR
(when accurate), for 𝑝𝑒𝑡𝑠_1. The plot also reports the performance
of the DIN-DQL generated query, and a variant of nl2weld where
we drop domain specific instructions (Figure 8) from the prompt.
For about half the queries, all the different IRs are identical. We
only report numbers when there is some observable performance
difference.

As can be seen, nl2weld often generates programs (on queries
𝑞15 − 𝑞21, 𝑞35 − 𝑞38) that are more efficient (at least 1.25× faster)
than gold SQL. Figure 13 reports a qualitative comparison of the
generated IRs. nl2weld is often able to produce programs with
fewer dictionaries (see Section 2 for an example). In two cases
(𝑞9, 𝑞10) nl2weld has poorer performance because it picks a less
efficient join order.

Interestingly, we find that DIN-SQL generated queries can match
the improved performance of nl2weld for 5 queries (𝑞17, 𝑞18, 𝑞36−
𝑞38), highlighting the usefulness of using LLMs to generate alter-
nate SQL representations. nl2weld still produces better programs
than both gold SQL and DIN-SQL for 6 queries, demonstrating that,
even from a performance point of view, there is value in consider-
ing IR as a target for LLMs. Finally, as one would expect, domain
specific instructions are important not just for accuracy but also for
performance; dropping them degrades performance on 5 queries.

We also compared SQL queries running on duckDB with their
Weld translations and found that for long running queries (>
100𝑚𝑠), the Weld version was faster by 1.2 − 3×. Several other IR
based systems [8, 10, 12] have reported significant improvements
over duckDB as well.

Note that the objective of this paper is not to directly compare
Weld with duckDB or with other IR based systems, but to only show
that nl2ir systems are useful to study as they can achieve better
translation accuracy and performance on some queries.

5 DISCUSSION

With the emergence of LLMs, there is an exciting opportunity to
build natural language based data analytics systems that can be
used even by non-experts.

In this paper, we have shown that these systems can translate nat-
ural language queries directly to custom IRs. We build and evaluate
an instance of such an nl2ir pipeline that uses GPT-4 to translate
natural language intent into Weld IR. We show that this pipeline
can solve problems that are challenging for nl2sql and someteims
achieve better performance than nl2sql. In doing so, our tool brings
the community one step closer to democratizing data analytics via
natural language.

Future research directions. Our work is a first step towards using
LLMs to translate natural language queries to custom IRs. We have
some initial evidence that this can be done with reasonable accuracy
and efficiency. However, several challenges remain.

First, we have implemented and evaluated only one instance of
nl2ir. It remains to be seen whether our methodology extends to
other IRs [8, 12, 16, 21] that are concise and well-defined like Weld.

Second, how do we get accuracy of these systems closer to 100%?
We show that by combining nl2irwith nl2sql, one could get closer
to this target on a few benchmarks. However, a more thorough, real
world, evaluation is needed. Natural language is inherently ambigu-
ous, and there is no easy way to know whether a formally specified
query, be it in SQL or some other IR, captures the natural language
intent. We envision that a more comprehensive system that lets

Welding Natural LanguageQueries to Analytics IRs with LLMs CIDR’24, January 14-17, 2024, Chaminade, USA

Query Sample SQL Query How nl2weld generated IR is different

q9,q10,
q33, q34

SELECT count(T1.PetID) FROM Pets AS T1 JOIN Has_Pet AS T2
ON T1.PetID = T2.PetID JOIN Student AS T3 ON T2.StuID = T3.StuID
WHERE PetType = 'dog' AND Sex = 'F'

Generated IR uses a less efficient join order or join
algorithm

q15-q21 SELECT StuID FROM Student WHERE StuID NOT IN (SELECT T1.StuID
FROM Student AS T1 JOIN Has_Pet AS T2 ON T1.StuID = T2.StuID
JOIN Pets AS T3 ON T2.PetID = T3.PetID WHERE T3.PetType = 'cat')

Generated IR avoids set operation induced joins
(except, not-in, intersect), uses one or two dictio-
naries with custom aggregation. (Figure 2 is q16)

q17-q20,
q35,q36

SELECT count(T1.PetID), T1.StuID FROM HAS_Pet AS T1
JOIN Student AS T2 ON T1.StuID = T2.StuID GROUP BY T1.StuID

Generated IR avoids a PK-FK join. For q17,q18 and
q36, DIN-SQL also generates a query without the
join.

q37, q38 SELECT Fname, Sex FROM Student WHERE StuID IN (SELECT
StuID FROM HAS_Pet GROUP BY StuID HAVING count(PetID) > 1)

Generated IR performs aggregation before joins.
DIN-SQL is able to match this with an alternative
SQL representation.

Figure 13: Summary of differences between nl2weld generated IR and IR corresponding to the gold standard query

users specify and refine intent in an incremental and interactive
way would be needed.

Finally, going from natural language to IRs instead of SQL skips
over the SQL query optimizer, and we did find cases of performance
degradation because of this in our experiments. Recent research
shows howmany query plan rewrites can be equivalently expressed
as IR-to-IR rewrites in a compiler [10]. This is another interesting
future research direction.

REFERENCES

[1] Apache arrow. https://arrow.apache.org/.
[2] Datafiller. https://www.cri.ensmp.fr/people/coelho/datafiller.html.
[3] Spider 1.0. https://yale-lily.github.io/spider.
[4] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric

Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha
Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv:2303.12712, 2023.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. Evaluating large language models trained on code. arXiv:2107.03374, 2021.

[6] Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. Catsql: To-
wards real world natural language to sql applications. Proc. VLDB Endow.,
16(6):1534–1547, apr 2023.

[7] Ferdinand Gruber, Maximilian Bandle, Alexis Engelke, Thomas Neumann, and
Jana Giceva. Bringing compiling databases to risc architectures. In Proceedings
of the VLDB Endowment, volume 16. VLDB Endowment, 2023.

[8] Tim Gubner and Peter Boncz. Charting the design space of query execution
using voila. Proc. VLDB Endow., 14(6):1067–1079, feb 2021.

[9] Andreas Jungmair, Tobias Ziegler, and Alfons Kemper. Designing an open frame-
work for query optimization and compilation. Proceedings of the VLDB Endow-
ment, 15:2389–2400, 2022.

[10] Michael Jungmair and Jana Giceva. Declarative sub-operators for universal data
processing. Proc. VLDB Endow., 16(11):3461–3474, jul 2023.

[11] Kaggle. State of data science and machine learning 2022. https://www.kaggle.
com/kaggle-survey-2022, 2022.

[12] Timo Kersten, Viktor Leis, and Thomas Neumann. Tidy tuples and flying start:
fast compilation and fast execution of relational queries in umbra. The VLDB
Journal, 30:883–905, 2021.

[13] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. Natural
language to sql: Where are we today? Proceedings of the VLDB Endowment,
13(10):1737–1750, 2020.

[14] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. Building
efficient query engines in a high-level language. In Proceedings of the VLDB
Endowment, volume 7, pages 853–864. VLDB Endowment, 2014.

[15] Jyoti Leeka and Kaushik Rajan. Incorporating super-operators in big-data query
optimizers. Proc. VLDB Endow., 13(3):348–361, nov 2019.

[16] Yinan Li, Jiajie Luo, and Kenny Q. Zhu. Horseir: A uniform vector representation
for relational and array languages. In Proceedings of the 2018 ACM SIGMOD
International Conference on Management of Data, pages 1643–1658. ACM, 2018.

[17] Kim Manis. Introducing microsoft fabric and copilot in microsoft power
bi. https://powerbi.microsoft.com/en-us/blog/introducing-microsoft-fabric-and-
copilot-in-microsoft-power-bi/.

[18] Thomas Neumann. Efficiently compiling efficient query plans for modern hard-
ware. In Proceedings of the VLDB Endowment, volume 4, pages 539–550, 2011.

[19] Shoumik Palkar, James J. Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul
Palamuttam, Parimarjan Negi, Malte Schwarzkopf, Holger Pirk, Saman P. Amaras-
inghe, and Matei Zaharia. Weld: Rethinking the interface between data-intensive
libraries. In Proceedings of the 2018 International Conference on Management of
Data (SIGMOD ‘18), pages 1573–1588. ACM, 2018.

[20] Shoumik Palkar, James J. Thomas, Anil Shanbhag, Deepak Narayanan, Malte
Schwarzkopf, Holger Pirk, Saman Amarasinghe, and Matei Zaharia. Weld: A
common runtime for high performance data analytics. In 8th Biennial Conference
on Innovative Data Systems Research (CIDR ‘17), 2017.

[21] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. Voodoo - a vector
algebra for portable database performance on modern hardware. In Proceedings
of the VLDB Endowment, volume 9, pages 1707–1718, 2016.

[22] Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context
learning of text-to-sql with self-correction. arXiv:2304.11015, 2023.

[23] Mark Raasveldt and Hannes Mühleisen. Duckdb: An embeddable analytical
database. In Proceedings of the 2019 International Conference on Management of
Data, SIGMOD ’19, page 1981–1984, New York, NY, USA, 2019. ACM.

[24] Philip Wadler. Linear types can change the world! In Programming Concepts and
Methods, 1990.

APPENDIX A : COMPLETE SYSTEMS PROMPT

As discussed in Section 3, the systems prompt has the language
description and the database specification. The language description
has four parts.

(1) The first part is a description of common features and this
can be found in Figure 6 of Section 3.

(2) The complete description of Weld collections is shown in
Figure 14.

(3) The input-output examples that are supplied with the prompt
are listed in Figures 15 — 17.

(4) The last part is the domain specific instructions and these can
be found in Figure 8 secrefPipeline.

Further the system prompt also contains a specification of the
database. The database specification for the 𝑝𝑒𝑡𝑠_1 databases is
shown in Figure 18.

https://arrow.apache.org/
https://www.cri.ensmp.fr/people/coelho/datafiller.html
https://yale-lily.github.io/spider
https://www.kaggle.com/kaggle-survey-2022
https://www.kaggle.com/kaggle-survey-2022
https://powerbi.microsoft.com/en-us/blog/introducing-microsoft-fabric-and-copilot-in-microsoft-power-bi/
https://powerbi.microsoft.com/en-us/blog/introducing-microsoft-fabric-and-copilot-in-microsoft-power-bi/

CIDR’24, January 14-17, 2024, Chaminade, USA Kaushik Rajan, Aseem Rastogi, Akash Lal, Sampath Rajendra, Krithika Subramanian, and Krut Patel

C1. vector collection v:vec st has a vector type, it represents a
collection of elements of type st.
(a) v can be iterated over using a for loop.
Let res = for (v,collection_type,|b,idx,row| (body)). Where
v is a vector being iterated on. b binds to collection_type, is a
new collection into which expressions on elements of v are
folded. idx is a loop index, row is an element of the vector.

(b) Supports a merge function merge(v, val) that appends val to
v.

(c) supports standard reduction operations SUM_[bt](v),
MAX_[bt](v), MIN_[bt](v), COUNT(v) to reduce a vector of
elements 𝑣 of a base type [𝑏𝑡] to a scalar value.

(d) v supports a result function. Let w=result(v). It is required that
result is called before iterating over a vector, or applying other
operations and that no calls to merge are made after result.

Finally note that we have a type-alias for vec called appender
which is the collection type that we construct in a for loop.
C2. A dictmerger collection dr:dictmerger(key:st,value:st,redFn)
has a dictionary type, that represents key value pairs where
keys and values can themselves be basic types or structs of ba-
sic types. In addition it takes a reduction function redFn, of the
form |agg:st,curr:st|→(e). Where agg is the current value in the
dictmerger and curr is a new value to be folded into agg. e is an
expression that evaluates the new agg that has been updated with
curr. The identity struct contains the initial values for each ele-
ment in the agg struct. dr supports the following operations. The
full types of dictmerger variables and the complete redFn should
be explicitly defined.
(a) dr supports an optlookup function.
(flag:bool,v:st) = optlookup(dr,k:st) produces flag:=True
only if the key k exists in the dictionary, and when flag is true, v
contains the value in the dictionary.

(b) It supports a merge function merge(dr,k:st,v:st). The merge
function dr.merge(k,v) checks if the key k already exists and if
so updates the current value v with the new value by applying
comOp. Note that the keys of a dictionary are to be unique.

(c) dr can be converted into a vector with let v =tovec(dr).
(d) dr supports a result function result(dr). It is required that
result() be called before any calls to optlookup ortovec and that
merge is not called after result.

C3. A groupmerger collection gm:groupmerger(key:st,value: st),
represents a dictionary with key 𝑘 of some struct type and a value
which is a vector of some struct type. A groupmerger supports
the following operations. The full types of groupmerger variables
should be explicitly defined.
(a) gm supports a merge function gm.merge(k:st,v:st). that ap-
pends 𝑣 of type 𝑠𝑡 to the current value vector.

(b) gm supports an optlookup function.
output = optlookup(gm,k:st) produces a struct with
output.$0:=True only if k exists in the dictionary and
when true output.$1 contains the value vector in the dictionary.
Note the value vector outputted by optlookup is of type 𝑣𝑒𝑐 .

(c) gm supports a result function.gm:=result(gm). It is required
that 𝑟𝑒𝑠𝑢𝑙𝑡 () is called before any calls to optlookup and that no
calls to append are called after result.

Figure 14: Specifying Weld-specific abstractions in a prompt

example 1 Given a vector of integers as input, output a
vector where each element is doubled.

|x:vec[i32]| #input
let y = for (x,appender[i32],|b,i,e| #C1.a
merge(b,e+e); #C1.b, S1
);
let res=result(y); #C1.d
res

example 2 Given x:vec[measure:f64,wt:i32]. Find all ele-
ments in the input vector where wt is greater than 3.

|x:vec[{measure:f64,wt:i32}]| #input
let c = for (x,appender[{i32,f64}],|b,i,row|#C1.a
if(row.wt>3,#S2, S1 cond

merge(b,{row.wt,row.measure}),#C1.b, S1 then part
b#S1 else part

)
);
result(c)#C1.d

example 3 Given x:vec[i32], output the sum of absolute
values of the elements.

|x:vec[i32]| #input
let c = for (x,appender[i32], |b,i,e|#C1.a
if(e>0,#S1 cond

merge(b,e),#C1.b, S1 then part
merge(b,−e)#S1 else part

)
)
let final = SUM_i32(result(c));#C1.c, C1.d
final

Figure 15: Input output examples for vectors

Welding Natural LanguageQueries to Analytics IRs with LLMs CIDR’24, January 14-17, 2024, Chaminade, USA

example 4 Given Inp:vec[id:i64,m1:f64,m2:f64,wt:i32] write
a program computes the sum of m1 and max of m2 per id
for rows with wt greater than 9

|Inp:vec[{id:i64,m1:f64,m2:f64,wt:i32}]|#input
Iterate over the rows of Inp
let output = for(inp, dictmerger[i64,{f64,f64},

|agg,curr|{curr.$0+agg.$0,if(curr.$1>agg.$1,curr.$1,agg.$1)},
{0,f64(−Infinity)}], #S1,C1.a,C2
|b,i,row|

if (row.wt > 9,
merge(b,{row.id, {row.m1, row.m2}}),#C2.b

b)#S1
);
result(output)#C2.d

example 5 Given parts:vec[id:i32,size:i32,name:str] with id
as a primary key and store:[vecpart_id:i32,location:str] with
a foriegn key part_id that references parts 𝑖𝑑 . Find part_id,
name, size, location and a flag indicating if the size is greater
than 15 or not.

|parts:vec[{id:i32,size:i32,name:str}],
store:[vec{part_id:i32,location:str}]| #input
#use dictmerger for parts as id is a primary key
#use custom lambda to remember the values for the key
let parts_dict = for(parts,dictmerger[i32,{sz:i32,nm:str,szGt15:bool},
|agg,curr|if(curr.sz>15,

{curr.sz,curr.nm,true},
{curr.sz,curr.nm,false}
),
{i32(−Infinity),ID_str(),false}],|b,i,e| #S1,C1.a,C2

merge(b,{e.id,{e.size,e.name,false}})#C2.b, S2
);
let parts_dict_res = result(parts_dict);#C2.d
let combined=for(store,

appender[{id:i32,name:str,size:i32,location:str,szGt15:bool}],
|app,i,st|#C1.a

let from_parts=optlookup(parts_dict_res,st.$0);#C2.a
if(from_parts.$0, #S1

merge(app,{st.part_id,from_parts.$1.nm,
from_parts.sz,st.location,from_parts.$1.szGt15}),#C1.b
app

)#S1
);
result(combined)#C1.c

Figure 16: Input output examples for dictmerger

example 6 Given a small table X:vec[Okey:i64, commit-
Date:date, priority:str] and a large table Y:vec[Ykey:i64, ship-
mode:i8, receivedDate:date, price:f32, cost:f64]. Find the sum
of revenue (defined as price - cost) for high priority orders per
shipmode that were received before the commit date. From
this determine the shipmode with the highest total revenue.

|X:vec [{Okey:i64, commitDate:date, priority:str}],
Y:vec[{Ykey:i64, shipmode:i8, receivedDate:date, price:f32, cost:f64}]|
let high_pri_orders = for (X, groupmerger[i64, date],|gm,i,row|#S1,C3

if (row.priority == "high" ,
merge(gm, {row.Okey, row.commitDate}),#C3.a
gm

)#S1
);
let high_pri_orders_dict = result(high_pri_orders);#C3.d
let rev_shipmode = for(Y,dictmerger[i8,f64,|agg,curr|agg+curr,f64(0)],
|dm,i,ys|#C1.a,C2
let valueOut = optlookup(high_pri_orders_dict,ys.Ykey);#C3.b
if(valueOut.$0,#S1
for(valueOut.$1,dm,|b,i,x|#C1.a

if (ys.receivedDate < x, #S1
merge(b,{ys.shipmode,ys.price − ys.cost}),#C2.b
b

)#S1
),
dm

)
);
let rev_shipmode_vec = tovec(result(rev_shipmode));#C2.c
let max_rev_shipmode = for(rev_shipmode_vec,

dictmerger[bool,{i8,f64},
|agg,curr|if(curr.$1>agg.$1,curr,agg),{ID_i8(),f64(−Infinity)}],
|dm,i,rev_shipmode|#C1.a,C2

merge(rev_shipmode.$0,rev_shipmode.$1)#C2.b
);

let final_res = optlookup(result(max_rev_shipmode),ID_bool())#C2.a
final_res

Figure 17: Input output examples for groupmerger

CIDR’24, January 14-17, 2024, Chaminade, USA Kaushik Rajan, Aseem Rastogi, Akash Lal, Sampath Rajendra, Krithika Subramanian, and Krut Patel

Input tables and schema

pets(pet_id:i32, pet_type:str, pet_age:i32, weight:f64)
: primary−key(pet_id)
has_pet(student_id:i32, pet_id:i32):
foreign−key(pet_id references pets(pet_id)),
foreign−key(student_id references student(student_id))
student(student_id:i32, last_name:str, first_name:str,
age:i32, sex:string, major:i32, advisor:i32, city_code:str)
: primary−key(student_id)
pets is a small sized table.
has_pet is medium sized table
student is a large sized table

Sample data

insert into Student values(101, 'Smith', 'Linda', 18, 'F', 60, 121,'BAL');
...
insert into Student values (102, 'Kim', 'Tracy', 19, 'F', 50, 712,'HKG');
...
insert into Has_Pet values (1001, 2001);
...
insert into Has_Pet values (1002, 2003);
...
insert into Pets values (2001, 'cat', 3, 12);
...
insert into Pets values (2003, 'dog', 1, 9.3);
...

Figure 18: Database specification for pets_1

APPENDIX B : END-TO-END EXAMPLE WITH

NL2WELD

This section shows an end-to-end example of the different user
prompts used by nl2weld and the output of gpt-4 as well as the
compiler.

(1) Figure 19 shows the initial prompt that generates a program
given a query text.

(2) Figure 20 shows the self-reflect prompt and the response.
(3) Figure 21 shows the response of the compiler, the self-fix

prompt and the response from gpt-4.

The program output by the last step successfully compiles and ends
the pipeline.

Generative agent request

Given a query text your task is to write multiple programs in L. A
program is a single lambda that takes one or more input vectors
and returns a single output vector. All programs are to be written
with line numbers and end of line comments on what rules were
applied. Please use input tables as defined in the database and
use table names and column names as is for input vectors.You
are going to be evaluated on the correctness of the programs you
generate, and on whether you followed the rules of programming
carefully or not. Lets work this out step-by-step to be sure we get
the right answer.
Find number of pets owned by students who are older than 20.
please output a plain text program. All non program text should
be prefixed with #

GPT-4 response

|students:vec[{student_id:i32, last_name:str, first_name:str,
age:i32, sex:str, major:i32, advisor:i32, city_code:str}]

, |has_pet:vec[{student_id:i32, pet_id:i32}]| #input
let older_students = for (students, appender[{student_id:i32, age:i32}],
|b, i, row| #C1.a
if (row.age > 20, #S1 cond
merge(b, {row.student_id, row.age}), #C1.b, S1 then part
b #S1 else part

)
);
let older_students_res = result(older_students); #C1.d

let older_students_dict = for (older_students_res,
dictmerger[i32, i32, |agg, curr| curr, i32(−1)],
|b, i, e| #C2

merge(b, {e.student_id, e.age}) #C2.b
);
let older_students_dict_res = result(older_students_dict); #C2.d

let pet_count = for (has_pet, dictmerger[i32, i32,
|agg, curr| agg + curr, i32(0)],
|b, i, row| #C1.a, C2

let is_older_student = optlookup(older_students_dict_res,
row.student_id); #C2.a

if (is_older_student.$0, #S1 cond
merge(b, {row.student_id, i32(1)}), #C2.b, S1 then part
b #S1 else part

)
);
let pet_count_res = result(pet_count); #C2.d

let total_pet_count = SUM_i32(tovec(pet_count_res)); #C1.c

Figure 19: Generative agent and response

Welding Natural LanguageQueries to Analytics IRs with LLMs CIDR’24, January 14-17, 2024, Chaminade, USA

Self-reflect agent request

Given a query and a program that is supposed to implement the
query, check if the program is logically incorrect or if it does not
follow the rules of the language. Produce the correct program and
add detailed comments justifying its correctness.
Query: Find number of pets owned by students who are older than
20.
Program:... (Output of generative agent)

GPT-4 response

The original program follows the rules of L and is correct.
Here's the program with end−of−line comments for each rule applied.

|students:vec[{student_id:i32, last_name:str, first_name:str,
age:i32, sex:str, major:i32, advisor:i32, city_code:str}]

, |has_pet:vec[{student_id:i32, pet_id:i32}]| #input
let older_students = for (students, appender[{student_id:i32, age:i32}],
|b, i, row| #C1.a
if (row.age > 20, #S1 cond
merge(b, {row.student_id, row.age}), #C1.b, S1 then part
b #S1 else part

)
);
let older_students_res = result(older_students); #C1.d

Step 2: Create a dictionary of older students with student_id as the key
let older_students_dict = for (older_students_res,

dictmerger[i32, i32, |agg, curr| curr, i32(−1)],
|b, i, e| #C2

merge(b, {e.student_id, e.age}) #C2.b
);
let older_students_dict_res = result(older_students_dict); #C2.d

Step 3: Count the number of pets owned by older students
let pet_count = for (has_pet, dictmerger[i32, i32,

|agg, curr| agg + curr, i32(0)],
|b, i, row| #C1.a, C2

let is_older_student = optlookup(older_students_dict_res,
row.student_id); #C2.a

if (is_older_student.$0, #S1 cond
merge(b, {row.student_id, i32(1)}), #C2.b, S1 then part
b #S1 else part

)
);
let pet_count_res = result(pet_count); #C2.d

let total_pet_count = SUM_i32(tovec(pet_count_res)); #C1.c

Figure 20: Self reflect agent and response

Weld compiler output

InternalError Cannot cast (i32,i32) to i32

Self-fix agent request

GivenWeld program and a compiler error in the program, produce
the fixed Weld program. please only output plain text programs
without verbose comments, ...add line numbers as per line com-
ments
Program: ...(Output of self−reflect agent)
Compiler output : InternalError Cannot cast (i32,i32) to i32

GPT-4 response

#1
|students:vec[{i32, str, str, i32, str, i32, i32, str}],

has_pet:vec[{i32, i32}]|#2

let older_students = for (students, appender[{i32, i32}], |b, i, row|#3
if (row.$3 > 20,#4

merge(b, {row.$0, row.$3}),#5
b#6

)#7
);#8
let older_students_res = result(older_students);#9

let older_students_dict = for (older_students_res,
dictmerger[i32, i32, |agg, curr| curr, i32(−1)],
|b, i, e|#10
merge(b, {e.$0, e.$1})#11

);#12
let older_students_dict_res = result(older_students_dict);#13

let pet_count = for (has_pet, dictmerger[i32, i32,
|agg, curr| agg + curr, i32(0)],
|b, i, row|#14
let is_older_student = optlookup(older_students_dict_res,

row.$0);#15
if (is_older_student.$0,#16

merge(b, {row.$0, i32(1)}),#17
b#18

)#19
);#20
let pet_count_res = result(pet_count);#21

let pet_count_vec = tovec(pet_count_res);#22
let pet_counts_only = for (pet_count_vec, appender[i32], |b, i, e|#23

merge(b, e.$1)#24
);#25
let total_pet_count = SUM_i32(result(pet_counts_only));#26
total_pet_count#27

Figure 21: Compiler output, self-fix agent and response

	Abstract
	1 Introduction
	2 Motivating Example
	3 nl2weld pipeline
	4 evaluation
	4.1 Accuracy
	4.2 Cost of using the LLM pipeline
	4.3 Performance evaluation

	5 Discussion
	References

