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Abstract

With the shift to databases-as-a-service, vendors are able to collect
high-level database traces of executed workloads while retaining
the privacy of their customers. In contrast to pure end-to-end la-
tency statistics, traces contain enriched information that is useful
for tasks such as workload monitoring and regression testing. De-
spite its importance, efficient analysis and exploration of traces
and their rich feature space remains a challenge. In this paper, we
introduce TracEx, an open-source Trace Exploration tool that
facilitates workload trace analysis and comparison for database
systems. TracEx allows users to understand their workload by
providing an intuitive, visual interface that explores the workload
along different dimensions, e.g., resource utilization or database
operator usage. Additionally, users are able to contrast and com-
pare workloads that have been collected from different hardware
configurations or even compare traces between database systems.

1 Introduction

The shift from on-premise database management systems (DBMS)
to managed databases-as-a-service in cloud environments has en-
abled a wider variety of customers to use DBMSs on an everyday
basis. At the same time, the way customers use database systems
has diversified, creating new (types of) workloads in addition to
established types like transactional and analytical processing, such
as hybrid or graph-based workloads. Understanding how work-
loads are executed, optimizing resource utilization, and ensuring
optimized execution of workloads in cloud database systems can be
challenging for both providers and customers due to their inherent
complexity. To address these challenges, managed database sys-
tems, e.g., Snowflake [3], Azure Synapse [1], and AWS Redshift [9],
continuously monitor and record statistics on query executions in
so-called traces that often contain workload characteristics such as
performance data, resource metrics, and query execution statistics,
while adhering to privacy regulations. In contrast to pure end-to-
end latency statistics, traces can be used to enrich information
collected for workload monitoring [16, 26] and regression testing.
Despite its importance, efficient analysis and exploration of traces
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and their rich feature space remains a challenge. We identify that
most challenges can be attributed to one of the following reasons:

(i) Extracting valuable features from raw data requires intricate
knowledge of how the system operates because traces can
include hundreds of features.

(ii) Mapping the features of interest into a single feature space
is non-trivial, given a multitude of factors that interact with
one another.

In our work, we investigate the use of DBMS traces to gain a
more comprehensive understanding of a workload. This involves
not only evaluating the performance of a workload, but also ex-
amining characteristics such as resource utilization, execution de-
tails (e.g., query plan), and the setup of a system’s environment
(e.g., whether caching is enabled).

Example 1.1 (Workload Analysis). A cloud provider’s engineering
team has completed a new release of its DBMS and is now looking to
prioritize its next milestones, i.e., whether to improve the scan, join,
or filter operator. To better understand what changes would provide
the most value to their customers, they analyze the traces of their
system. Figure 1 shows a visual analysis of the trace, where each
query is assigned to a feature group (operator) if the majority of
the execution time is spent on that operator. Based on this analysis,
the engineers decide to improve the scan as most of the queries in
the workload rely heavily on this operator.

Workload analyses like these can assist in developing a deeper
understanding of the characteristics of a workload, allowing users to
make decisions that guide and impact how workload execution and
performance are improved in the long run. At the same time, per-
forming easy-to-understand, visual analyses of multi-dimensional
data is not trivial. Interpretation of these traces requires extensive
domain knowledge to determine which features to display, as well
as knowledge of how to map the feature values into a two- or three-
dimensional space to facilitate intuitive understanding of the data.
Thus, we argue that given the large amounts of data contained in
DBMS traces (e.g., 7 GiB compressed data for 14 days of Snowset, a
privacy-preserving trace from selected Snowflake customers [29]),
reducing the search space and focusing on a variety of well-defined
characteristics is a first step in understanding which parts of a
single workload or trace should be examined more closely.

In addition to single-workload analysis, we also explore the
problem of comparative workload understanding:

Example 1.2 (Workload Comparison). A customer wants to un-
derstand whether the benchmarks they are currently using mimic
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Figure 1: Query groups within the Snowset, clustered on op-

erator shares.

their production workload. In particular, they want to ensure that
the test suite has full coverage of all relevant DBMS operators and
the query plans that are typically executed. Hence, they decide to
capture the traces of the benchmark as well as the original workload
and overlay them visually, to get a first impression of whether the
benchmarks are sufficient. Figure 2 shows the resulting visualiza-
tion. Looking at the difference between the observed benchmark
and the original workload queries, they determine that the test cov-
erage is insufficient and that they need to introduce additional test
queries that will subsequently cover the remaining feature space.

The discussed examples focus on workload understanding and
comparison. To address these and other challenges within the prob-
lem space of workload characterization and understanding, we
introduce TracEx, a tool that allows users to visualize, compare,
and contrast workloads. To the best of our knowledge, TracEx is
the first workload analysis tool that allows users to evaluate their
workload traces from one or more DBMS across a number of di-
mensions. It is designed in a modular way and currently supports
trace exploration on SQL Server and Snowflake, but can easily be
extended to other DBMS. TracEx enables users to answer research
questions, like the ones above, by providing an easy-to-use graphi-
cal user interface and automatically generated visualizations. Thus,
TracEx helps to overcome the identified challenges of using traces.

(i) TracEx assists in selecting relevant features by providing a
close human-in-the-loop data exploration experience.

(ii) TracEx provides a set of visualizations that allow users to
compare and contrast different workloads.

Furthermore, TracEx has been made publicly available as an open-
source tool1.

1https://github.com/lnsp/trace-explorer
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Figure 2: Snowset compared to the TPC-DS and TPC-H bench-

marks (both SF10), clustered on operator shares.

2 Problem Statement & Design Considerations

In our work, we investigate the problem of workload visualization
and interactive workload exploration. Specifically, we assume that
there exists a set of log events 𝐸 where each event 𝑒 ∈ 𝐸 describes
the execution of a database query. For example, the standardized
TPC-H benchmark contains 22 queries. Thus, if the workload is
executed once, 𝐸 contains 22 events, where each event has a value
𝑣𝑖 , numeric or categorical, for each recorded feature (attribute) 𝑎𝑖 .
Attributes𝐴 =

∑
𝑖 𝑎𝑖 can be generic across or specific to a DBMS and

describe information such as operator shares or resource utilization
(e.g., compute resources or I/O operations).

2.1 Use case: Workload Analysis

In Example 1.1, we introduced the notion of workload analysis.
More formally, we define workload analysis as the problem of un-
derstanding the characteristics of a single workload. The under-
standing of a workload can be based on a variety of dimensions.
Specifically, workload traces contain a multitude of attributes, and
determining which ones are important and should be examined
more closely is non-trivial. For example, the Snowset [29] specifies
query start and stop timestamps and execution duration by area
of activity, such as query execution, control plane, and compila-
tion time, as well as query profiling information. It also contains
information about the warehouse, extensive information about I/O
operations from S3, cache and local SSD, and network statistics.
Given all these different types of attributes, we need to build a
workload analysis tool that is generic enough to handle different
types of statistics while allowing its users to efficiently explore
the attribute space. Thus, the problem of workload analysis is to
define an efficient and interactive framework that allows users to
intuitively explore any of their attributes.

2.2 Use case: Workload Comparison

We refer to workload comparison as the ability to compare and con-
trast two (or more) different workloads along the same attributes.
In Example 1.2, we discussed how workload comparison can help
users understand the coverage of benchmarks w.r.t. a reference
workload. Additionally, we envision that workload comparison
techniques can be used to identify the evolution of a workload over
time, i.e., the shift in query patterns or their resource consump-
tion, or to contrast the execution of the same workload on different
systems or hardware. The latter is particularly useful when cloud

https://github.com/lnsp/trace-explorer
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Figure 3:TracExworkflow: First, each dataset is transformed

into our intermediate representation (IR). Additional aggre-

gates and selections can be computed to generate derivatives

of a dataset’s IR. Afterward, TracEx visualizes the informa-

tion on the desired dimensions. This is an iterative process

facilitated by our easy-to-use interfaces.

service providers and their customers want to understand the im-
pact of infrastructure changes and improve the resource utilization
of a workload. Overall, we define the problem of workload com-
parison as providing an efficient and interactive framework that
allows users to compare and contrast a (set of) workload(s).

2.3 TracEx Desiderata

Given these use cases, we observe several desiderata for TracEx:
Ease-of-Use. To make this tool feasible in practice, it needs to be
intuitive to use, preferably through a graphical or web interface.
We envision that this tool can be used by domain experts such
as software engineers who want to dive deep into an issue and
debug it, or data scientists who want to explore the attribute space
for downstream machine learning applications. Thus, we want to
provide an interface that allows users to explore their workload
data independent of their domain knowledge.
Intuitive Visualizations. One of the biggest challenges in work-
load visualization is finding a good level of abstraction that high-
lights all the insights without overwhelming the user. Without a
layer of abstraction, it is often not possible to visualize even a subset
of a dataset.
Independence of Attributes. Different workload traces may con-
tain a variety of generic and system-specific events and attributes.
When implementing TracEx, we need to abstract from these at-
tributes and build workflows that allow users to explore attributes
independent of the exact variation of the attribute. In essence, we
need to identify groups of attributes, such as numeric time-series
attributes, categorical attributes, etc., around which we can then
build our visualizations.
Extensibility.We developed TracEx as an open-source tool and,
to further adoption, we envisioned TracEx as a modular library
that allows developers to extend it with minimal overhead. For
example, TracEx currently supports the extraction and processing
of traces from two different database systems, Snowflake and SQL
Server. New DBMSs can be added as newmodules by leveraging the
existing systems as examples. Similarly, we require that analysis and
visualization techniques are themselves modules within TracEx so
that they can, also, be extended in a straightforward manner.

3 TracEx Architecture

TracEx is designed for comprehensive trace analysis of execution
traces produced bymany commercial and open-source database sys-
tems. Initially, the generated database traces are converted into our
TracEx intermediate representation. This intermediate representa-
tion (IR) serves as a data table where each cell value corresponds
to the recorded value of an attribute for each given event. Users
interacting with TracEx can then manipulate both the data in the
IR as well as the visualizations interactively as shown in Figure 3.
For example, the user can first examine the differences in traces 𝑇1
and 𝑇3 by clustering the operators used for executing these work-
loads. If they see discrepancies in the database I/O operator shares,
the user can follow up and manipulate the IR of𝑇3, 𝐼𝑅3, to use only
those events that describe I/O operations (𝐼𝑅′3). They then decide
to visualize a more in-depth analysis of the I/O resources used for
this workload. This example workflow showcases the two main
components of our tool, the data processing layer and the data
visualization layer.

3.1 Data Processing Layer

Preprocessing the data, i.e., loading and transforming the data into
a common intermediate format, is crucial to streamline the pipeline
of TracEx. Our input data can be of any type, but custom transform-
ers into our row-wise intermediate language are required. Similar
to industry pipelines [8], we first extract and clean the data, for
example using outlier detection mechanisms, and then refine the
dataset according to the attributes, selected by the TracEx user.
For TracEx, we choose a tabular representation as IR and store the
resulting data in Parquet [7]. Furthermore, we use DuckDB [21], as
a query engine on top of the IR to enable complex processing steps.
Using a SQL layer to efficiently slice and dice the data enables the
creation of data cubes, which we then use as input to our visual-
ization pipeline. This allows us to push filtering steps into the data
processing layer which reduces the input size of the visualization
data, increasing the interactivity of our tool. In addition to augment-
ing the dataset on the fly, we also allow users to perform outlier
removal. For example, TracEx can compute the standard score or
z-score as 𝑧𝑖 =

𝑥𝑖−𝜇𝑖
𝜎𝑖

for numerical attributes by calculating the
mean and standard deviation of attribute 𝑎𝑖 . By using an attribute
threshold, we can exclude events from the resulting dataset.

3.2 Data Visualization Layer

To find meaningful insights in the trace data, TracEx allows us to
explore and visualize the data in multiple ways. Our tool supports
overall and individual group visualization, clustering, and automatic
labeling of groups.

A challenge that all of these techniques face is to run efficiently
in an interactive setting. To address this, we employ dimensional-
ity reduction to minimize the amount of data processed without
significant loss of information using a well-established technique
called Principal Component Analysis (PCA) [31]. Our PCA algorithm
chooses the number of components to retain at least 95% of the
variance of the input data.

3.2.1 Group Visualizations While PCA reduces the dimensional-
ity of the dataset significantly, it is not able to perform sufficient
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Figure 5: t-SNE visualization on TPC-H (SF10) for Snowflake

and SQL Server (𝑝 = 20, 𝑖 = 2000), clustered on operator shares.

transformations to allow for a two- or three-dimensional visual-
ization. Therefore, we use t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) to visualize high-dimensional data in a two- or
three-dimensional map [27]. While t-SNE is a powerful tool, a com-
pact 2D representation of high-dimensional data can be misleading,
as described by Wattenberg et al. [30]. The authors mention three
key challenges in its deployment: a) A dependency on the cho-
sen parameters of the algorithm, i.e., perplexity and the number
of iterations, b) the normalization of cluster density, and c) the
distance obfuscation between clusters. To address these concerns,
we first take a closer look at the perplexity (𝑝) parameter, which
is used to change the trade-off between local and global features
of a dataset. The clusters we see with t-SNE will typically become
clearer as perplexity increases and need to be adjusted according
to the dataset size. In addition to perplexity, t-SNE relies on the
number of iterations (𝑖) as a user-defined parameter. The literature
recommends perplexity values between 5 and 200 (often less), and
iterations of at least 250. Tools usually recommend 𝑝 = 30 and
𝑖 = 1000 as general starting points [6, 23].

Figure 4 shows the impact of perplexity on the performance
of t-SNE on the Snowflake dataset. Specifically, we observe that
setting perplexity 𝑝 = 10 does not show any distinct clusters, but
once we start increasing the parameter, we observe a clearer dis-
tinction between groups of queries in the visualization. Note that
the distance between these groups is not representative. In particu-
lar, t-SNE obfuscates both the density of clusters and the distance
between clusters through its dimensionality reduction. Therefore,
it is not possible to visually compare t-SNE results from different
datasets. To allow users to compare the same workload executed
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Figure 6: Comparison of clustering methods on a subset of

the Snowset.

on multiple different systems, we incorporated the possibility to
combine datasets and visualize them as categories within a single
t-SNE as shown in Figure 5. Here, the individual queries of the
Snowflake and SQL Server are clearly different in their character-
istics but consistent within themselves. For example, we observe
distinct cluster groups for SQL Server indicating that the perfor-
mance characteristics of almost all queries are different.

3.2.2 Clustering The visual clusters provided by t-SNE are an
intuitive, but not absolute way to identify clusters and rely purely
on user interpretation. To alleviate this problem, we implemented
additional clustering techniques in TracEx.
Agglomerative hierarchical clustering. The key advantage of
agglomerative hierarchical clustering is its independence of a pre-
defined number of clusters, i.e., it is a threshold-based approach
that minimizes the variance within clusters. Furthermore, it allows
us to partition our datasets using a transparent strategy based on a
defined linkage distance [22].
DBSCAN. Density-based spatial clustering of applications with
noise (DBSCAN) is a clustering algorithm that discovers clusters of
arbitrary shape [5]. The basic idea of DBSCAN is that the density
within a cluster should exceed the density outside the cluster.

Comparing agglomerative hierarchical clustering and DBSCAN, we
observe that the different clustering algorithms yield very different
results, as shown in Figure 6. DBSCAN groups most of the data into
two large clusters in the middle and keeps the outer data groups
separate. The reason for this behavior is that the data has different
density levels, making it difficult for the algorithm to identify clus-
ters. In comparison, agglomerative clustering, as shown in Figure 6a,
delivers a more nuanced view of the data. The separation between
clusters is much clearer and more consistent with the visual t-SNE
embedding. Note that both approaches use parameters that require
human-in-the-loop tuning.

3.2.3 Workload Labeling Another important aspect of workload
exploration is to label the visualized clusters so that users can
directly understand why the visualized clusters exist. Our labeling
algorithm summarizes the intuitive observation that a cluster is
defined as a coherent group of events that have low intra-cluster
variance for a set of attributes but large variance across clusters. To
implement this idea, we first compute the mean 𝜇C𝑖 and variance
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Figure 7: The Web UI of TracEx.

𝜎C𝑖 per attribute 𝑎𝑖 for each cluster C. With these metrics, we
compute a smoothed score 𝑧C𝑖 =

(
𝜇C𝑖 −𝜇𝑖

𝜎𝑖

)
·
(
1+𝜎𝑖
1+𝜎C𝑖

)
per cluster and

attribute. We use the cluster-wide (𝜎C𝑖 ) and global (𝜎𝑖 ) standard
deviations per attribute 𝑎𝑖 for smoothing the score to mitigate
the impact of large outliers on the mean value. In essence, this
smoothed score identifies the difference per attribute between a
selected cluster and the entire dataset.

We can sort the columns of each cluster by this smoothed score
and choose the first 𝑥 attributes to define the cluster label. A regular
z-score greater than two shows that the attribute score is twice the
standard deviation, and thus significantly different from the aver-
age within the dataset. Consequently, attributes with high scores
define a cluster in a meaningful way, which we will demonstrate
in Section 4.1. In contrast to using only principal components for
t-SNE and the clustering algorithms, the labeling computation of
mean, variance, and our smoothed score is relatively inexpensive
and can be executed on the intermediate representation directly.

3.3 Human-In-The-Loop Exploration

In TracEx, we provide the user with two means of interacting
with the framework, through a web and a command-line interface.
The web UI is shown in Figure 7. Here, the user has the means
to explore their database traces through the previously described
exploration steps: By importing and pre-processing their data as
well as subsequently visualizing it in various ways. We specifi-
cally designed TracEx to allow users to go back and forth between
the different parts of the tool, which enables an iterative explo-
ration process as follows: Users of TracEx essentially operate on
an internal, intermediate representation as previously shown in
Figure 3. This IR serves as the basis for scoping the data visualized
in subsequent exploration steps. Thus, if a user wants to focus on a
particular part of the data that they have identified as interesting
during the data visualization, they can go back to the pre-processing
step and re-scope the dataset as needed.

TracEx currently uses a selection of views that guides users to
meaningful insights without overwhelming them with the details
of visualization algorithms. The iterative nature of TracEx allows
users to determine the most insightful visualizations or suggestions
for which data to explore further with minimal guidance. The user
can modify all parameters and datasets as they see fit, allowing
for a fully customizable exploration process. As future work, we
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Figure 8: The query group analysis for a join-heavy cluster

in the Snowset dataset (operator shares).

want to add the option to create templates that allow users to
store their exploration workflows for easier reproducibility as well
as providing some guidance for commonly deployed workflows
specific to well-structured traces from known DBMS.

4 Demonstration

In our demonstration, we will focus on the user experience of
interacting with the web UI, allowing them to interactively analyze
the data as previously shown in Figure 7. We will provide trace data
for exploration of experiments with Snowset, TPC-H, and TPC-DS
from two different sources, SQL Server and Snowflake.

4.1 Walkthrough

As an example interaction with TracEx, consider the following
demonstration scenario.
Step 1: Data Processing Layer. The user starts the demo by open-
ing the web UI and uploading database traces to TracEx after which
they can explore the IR, for example by filtering the input data.
Step 2: Data Exploration.Next, the user interacts with the dataset
using SQL, for example by normalizing and scaling the output
attributes or computing aggregates.
Step 3a: Data Visualization - Workload Analysis. After pre-
processing, the data can be visualized using t-SNE, agglomerative
clustering, and score-based labels, allowing the user to inspect clus-
ters found in the workload. To showcase the generality of TracEx,
we will guide the user through two different scenarios:
DBMS Operators. Figure 8 shows the individual cluster view of
the join-heavy cluster from our running example. The smoothed
z-score label indicates the importance of the hash-join, as the oper-
ator share is 62%, and the negative influence of the scan operator
specific to this cluster. An in-depth visualization is shown on the
right side of the figure, comparing the cluster’s properties to those
of the whole dataset. We can conclude that the hash-join is the
deciding differentiating factor for this cluster. Returning to our
running example, this suggests that engineers trying to identify
future investments should focus on improving the hash-join here.
System Resources. In addition to query plan statistics, TracEx
can be used to understand a workload’s resource utilization. In
our second scenario, we examine a cluster that has a strongly in-
creased fraction of bytes written to S3 compared to the remaining
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Figure 9: Write-heavy cluster of Snowset restricted to log-

scaled resource features.

dataset. Figure 9 shows how this type of analysis can help optimize
infrastructure for the user’s workload.
Step 3b: Data Visualization - Workload Comparison. In this
part of the demonstration, we want the user to compare different
workloads. Figure 7 shows an example scenario when interacting
with our web UI which allows the user to select the workloads
as well as which attributes to compare. We will preload several
different workloads, allowing users to mimic the comparison be-
tween Snowset and the TPC benchmarks, for example, as shown in
Figure 2.

Overall, we envision an interactive demonstration that, after the
initial walkthrough, will allow the users to switch between different
parts of TracEx, for example refining workloads as described in
Step 2 and then visualizing them using one of the provided tech-
niques of the data visualization layer. The walkthrough is designed
to cover the feature space of TracEx, but since the implementa-
tion provides a user interface with preloaded workloads and IRs,
we will be able to dynamically adjust the demonstration scenario
depending on user preferences.

5 Related Work

Although capturing the traces of workloads is common in database
systems, to the best of our knowledge, TracEx is the first tool that
allows to visualize, compare, and contrast workloads. Prior work
has focused on tracing itself and its overhead, benchmarking of
database systems, and visualizations for monitoring logs.
Visualization. In the DBMS space, visualizations have been used
in various ways to facilitate user understanding: Many open-source
and commercial software applications visualize log files from vari-
ous (distributed) systems to monitor the health and performance of
systems [11, 16, 19]. Database vendors also provide tools to examine
query patterns and performance, such as AWS RDS Performance
Insights, Snowflake Query Profile, or Azure Query Performance
Insights [2, 18, 25]. These tools focus on individual query statistics
or system-wide resource utilization. TracEx is an additional tool
that helps understand query clusters within your workload, their
characteristics, and allows users to compare different workloads.
Unlike database-vendor-provided visualization tools, TracEx re-
lies solely on privacy-preserving traces, allowing data to be shared
across multiple entities. Similar to these tools, flame graphs help un-
derstand the resource utilization of different aspects of the database,
typically at a per-query or system-wide granularity.

Prior research has found that enabling users to interactively
explore data sets is important to facilitate their understanding of
the properties of their data [15, 24]. In TracEx, we complement
these approaches by using traces for interactive exploration using
techniques such as t-SNE, which has been shown to work well for
creating vector embeddings of queries [12].

General-purpose data visualization tools focus on various algo-
rithms for representing the data. These tools often require stronger
visualization knowledge (algorithms, etc.) and do not guide the
user to useful results. TracEx’s selection of easy-to-use tools helps
to understand the key components (clusters) of the workload and
allows for quick comparison of different data sets.
Database Tracing. Traces have been an object of interest for com-
panies like Oracle, [20], or Microsoft, [17], which have focused
on accurately capturing traces, replaying them, and helping users
understand them as early as 1997. Most of these traces assume full
access to the query and data space, thus allowing the DBMS provider
to collect more detailed query information to replay the query. To
resolve privacy issues, more recent work has furthermore added
obfuscation of the resulting data [32]. In our setting, we assume
that software-as-a-service database vendors collect anonymized
query statistics of their customers, which is a common practice
for cloud DBMS vendors. These statistics do not contain query-
specific information but can be used to explore usage patterns of
the users. One such example is the Snowset trace [29], provided
by Snowflake, which we explore with TracEx as an instance of
privacy-preserving traces.
Benchmarking. A core objective in benchmarking a DBMS-under-
test is to evaluate the system under conditions that are as realistic
as possible while at the same time avoiding the expense of replay-
ing a whole workload. To address this challenge, prior work has
focused on developing strategies for efficient benchmarking with
a given set of workloads [10, 13], or automatically generating test
workloads [14], but a core challenge remains that these workloads
fail to represent real-world characteristics [4, 28]. With TracEx, we
enhance a user’s understanding of their workload coverage which
can then be used to positively impact their benchmarking efforts
by focusing more on the most important tests.

6 Conclusion

In this paper, we presented TracEx, an open-source Trace
Exploration tool that facilitates workload trace analysis and com-
parison for any database system that can collect traces. This allows
users to understand their workload by providing an intuitive, visual
interface that explores the workload along different dimensions,
e.g., resource utilization or database operator usage. Additionally,
users are able to contrast and compare workloads that have been
collected from different hardware configurations or even compare
traces between database systems.

Acknowledgments

We would like to thank Shaleen Deep for his helpful comments
on the manuscript. Dominik Durner has received funding from
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement
No 725286).



TracEx: Understanding and Analyzing Database Traces CIDR’24, January 14-17, 2024, Chaminade, USA

References

[1] Josep Aguilar-Saborit and Raghu Ramakrishnan. 2020. POLARIS: The Distributed
SQL Engine in Azure Synapse. Proc. VLDB Endow. 13, 12 (2020), 3204–3216.

[2] Amazon. 2023. Analyze and tune Amazon RDS database performance. https:
//aws.amazon.com/rds/performance-insights/. accessed: 2023-12-01.

[3] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In SIGMOD Conference. ACM, 215–226.

[4] Shaleen Deep, Anja Gruenheid, Paraschos Koutris, Jeffrey F. Naughton, and
Stratis Viglas. 2020. Comprehensive and Efficient Workload Compression. Proc.
VLDB Endow. 14, 3 (2020).

[5] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In KDD. AAAI Press, 226–231.

[6] FlowJo. 2017. FlowJo tSNE. http://v9docs.flowjo.com/html/tsne.html. accessed:
2023-12-01.

[7] The Apache Foundation. 2023. Apache Parquet. https://parquet.apache.org/
accessed: 2023-12-01.

[8] Aurélien Géron. 2019. Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly
Media, Inc.

[9] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for Simpler
Data Warehouses. In SIGMOD Conference. ACM, 1917–1923.

[10] Florian Haftmann, Donald Kossmann, and Eric Lo. 2007. A framework for efficient
regression tests on database applications. VLDB J. 16, 1 (2007), 145–164.

[11] Splunk Inc. 2023. Splunk: The Key to Enterprise Resilience. https://splunk.com/.
accessed: 2023-07-20.

[12] Shrainik Jain and Bill Howe. 2018. Query2Vec: NLP Meets Databases for Gener-
alized Workload Analytics. CoRR abs/1801.05613 (2018).

[13] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woon-Hak Kang. 2019.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems. Proc. VLDB Endow. 13, 1 (2019), 57–70.

[14] Martin L. Kersten, Stefan Manegold, Ying Zhang, and Panos Kuoutsourakis. 2019.
SQALPEL: A database performance platform. In CIDR.

[15] Tim Kraska. 2018. Northstar: An Interactive Data Science System. Proc. VLDB
Endow. 11, 12 (2018), 2150–2164.

[16] Grafana Labs. 2023. Grafana: The open observability platform. https://grafana.
com/. accessed: 2023-07-20.

[17] Microsoft. 2022. Overview of the workload comparison process.
https://learn.microsoft.com/en-us/sql/dea/database-experimentation-assistant-
get-started?view=sql-server-ver16. accessed: 2022-10-25.

[18] Microsoft. 2023. Query Performance Insight. https://learn.microsoft.com/en-us/
azure/postgresql/single-server/concepts-query-performance-insight. accessed:
2023-12-01.

[19] OpenTracing. 2023. The OpenTracing project. https://opentracing.io/. accessed:
2023-07-20.

[20] Oracle. 1997. Managing Workloads. https://docs.oracle.com/cd/A57673_01/DOC/
sysman/doc/A55907_01/trace.htm. accessed: 2022-10-25.

[21] Mark Raasveldt and HannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In SIGMOD Conference. ACM, 1981–1984.

[22] scikit-learn developers. 2023. AgglomerativeClustering. https://scikit-learn.org/
stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html. ac-
cessed: 2023-12-01.

[23] scikit-learn developers. 2023. sklearn.manifold.TSNE. https://scikit-learn.org/
stable/modules/generated/sklearn.manifold.TSNE.html. accessed: 2023-12-01.

[24] Tarique Siddiqui, Paul Luh, Zesheng Wang, Karrie Karahalios, and Aditya G.
Parameswaran. 2022. Expressive querying for accelerating visual analytics.
Commun. ACM 65, 7 (2022), 85–94.

[25] Snowflake. 2023. Analyzing Queries Using Query Profile. https://docs.snowflake.
com/en/user-guide/ui-query-profile. accessed: 2023-12-01.

[26] The OpenTelemetry Authors. 2023. OpenTelemetry. https://opentelemetry.io.
accessed: 2023-12-01.

[27] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
JMLR 9, 11 (2008).

[28] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In DBTest@SIGMOD. ACM,
1:1–1:6.

[29] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala,
and Thierry Cruanes. 2020. Building An Elastic Query Engine on Disaggregated
Storage. In NSDI. USENIX Association, 449–462.

[30] Martin Wattenberg, Fernanda Viégas, and Ian Johnson. 2016. How to use t-SNE
effectively. Distill 1, 10 (2016), e2.

[31] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems 2, 1-3 (1987), 37–52.

[32] Jiaqi Yan, Qiuye Jin, Shrainik Jain, Stratis D. Viglas, and Allison W. Lee.
2018. Snowtrail: Testing with Production Queries on a Cloud Database. In
DBTest@SIGMOD. ACM, 4:1–4:6.

https://aws.amazon.com/rds/performance-insights/
https://aws.amazon.com/rds/performance-insights/
http://v9docs.flowjo.com/html/tsne.html
https://parquet.apache.org/
https://splunk.com/
https://grafana.com/
https://grafana.com/
https://learn.microsoft.com/en-us/sql/dea/database-experimentation-assistant-get-started?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/dea/database-experimentation-assistant-get-started?view=sql-server-ver16
https://learn.microsoft.com/en-us/azure/postgresql/single-server/concepts-query-performance-insight
https://learn.microsoft.com/en-us/azure/postgresql/single-server/concepts-query-performance-insight
https://opentracing.io/
https://docs.oracle.com/cd/A57673_01/DOC/sysman/doc/A55907_01/trace.htm
https://docs.oracle.com/cd/A57673_01/DOC/sysman/doc/A55907_01/trace.htm
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://docs.snowflake.com/en/user-guide/ui-query-profile
https://docs.snowflake.com/en/user-guide/ui-query-profile
https://opentelemetry.io

	Abstract
	1 Introduction
	2 Problem Statement & Design Considerations
	2.1 Use case: Workload Analysis
	2.2 Use case: Workload Comparison
	2.3 TracEx Desiderata

	3 TracEx Architecture
	3.1 Data Processing Layer
	3.2 Data Visualization Layer
	3.3 Human-In-The-Loop Exploration

	4 Demonstration
	4.1 Walkthrough

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

