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ABSTRACT

Compute Express Link (CXL) has emerged as a promising tech-
nology for expanding memory capacity and bandwidth in data-
intensive systems. Recent studies advocate interleaving CXL mem-
ory with local DRAM to create a new interleaved memory tier,
thereby increasing aggregate bandwidth for workloads that are
constrained by memory bandwidth. Following this trend, many
systems place data in the interleaved tier to accelerate query pro-
cessing. However, for most applications where data is stored on
CXL memory, existing works fail to account for the additional data
movement overhead to load the data into the interleaved memory.
In this paper, we revisit this design decision through the lens of
main-memory hash joins, breaking down performance across exe-
cution phases and developing a performance model that captures
both bandwidth benefits and data movement costs. Our analysis
demonstrates that moving only a portion of data from CXL memory
to DRAM can outperform the conventional strategy of relocating
the entire dataset to the interleaved memory tier for subsequent in-
place processing, due to reduced data movement and a balanced use
of memory bandwidth resources. This work challenges established
practices and offers practical guidance for designing CXL-aware
query operators 1.

1 INTRODUCTION

Modern database management systems (DBMSs) have suffered from
the main memory (DRAM?) scaling wall over the past decade. As
on-chip logic size continues to shrink, DRAM manufacturing has
struggled to keep pace. Consequently, memory resources such as
bandwidth-per-core and memory-capacity-per-core have plateaued,
resulting in diminishing performance gains for modern DBMS and
other memory-intensive data systems [11, 28, 31].

Compute Express Link (CXL) [23] has emerged as a recent ad-
vancement aimed at addressing this memory wall. It enables cache
coherent memory expansion over the Peripheral Component Inter-
connect Express (PCle) interface, supporting rack-scale memory
pooling and providing auxiliary bandwidth beyond conventional
Double Data Rate (DDR) based memory, albeit at higher access
latency [12, 13, 24]. In addition, the PCle interface offers improved
scalability in pin count and lower integration cost, making CXL a
more economical and power efficient alternative to traditional DDR
technologies [18, 26]. Given these advantages, CXL is increasingly
viewed as a practical foundation for building augmented memory

The source code is available at https:/github.com/fukien/hashjoins-meet-cxl .
2Since DRAM is the primary medium used for main memory, we use the terms “main
memory” and “DRAM” interchangeably throughout this paper.
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systems that can accelerate in-memory DBMS, analytical workloads,
and other memory and bandwidth-intensive operations [8, 13, 24].

As CXL sits atop PCle, accessing CXL memory and DRAM in
parallel allows the system to utilize bandwidth from both DDR and
PCle interfaces, resulting in a total bandwidth that exceeds what
either can provide individually. Based on this observation, many
have advocated forming a new memory tier by interleaving DRAM
and CXL memory at a system-specific ratio [8, 24, 26], relocating
the entire workload to the interleaved tier, and executing it there
for improved performance (see Section 2.1 for details). This strategy
has reported significant gains across multiple bandwidth-intensive
workloads [8, 13, 17, 25, 32].

At first glance, this widely adopted practice appears to be a rea-
sonable approach for bandwidth-intensive workloads. However, we
argue that it may become suboptimal, as it overlooks the cost of mov-
ing data into the interleaved memory tier. Many such workloads
span hundreds of gigabytes or more and are often stored in slower
but more economical storage layers to preserve precious DRAM
capacity. With CXL memory introduced, these large workloads are
typically placed in CXL memory, which is a common deployment
scenario for large-scale DBMSs and deep learning serving systems
built on tiered or rack-scale memory architectures [1, 9, 14-16]. In
such settings, relocating the entire workload into a newly formed
interleaved tier may introduce substantial data movement overhead.
This overhead can negate the benefits of increased bandwidth, and
in some cases, result in worse end-to-end performance than running
the workload entirely in CXL memory 3.

This paper validates this argument through the lens of main-
memory hash joins, which are widely regarded as bandwidth-
intensive and serve as fundamental building blocks in OLAP and
other in-memory DBMS workloads. Specifically, we study two state-
of-the-art main-memory hash join algorithms, partitioned hash join
(PHJ) [2, 7, 21] and non-partitioned hash join (NPH]J) [3, 4], by de-
composing them into execution phases and evaluating end-to-end
performance, including the cost of loading data from CXL mem-
ory to a faster memory tier (either DRAM or the aforementioned
DRAM-CXL interleaved memory tier). We then formulate a simple
yet generic performance model to quantify the benefits of increased
bandwidth and the penalties of data movement. Our analysis re-
veals that, contrary to conventional wisdom, judiciously moving a
portion of data to DRAM can properly balance data movement costs
and bandwidth benefits. This approach delivers better end-to-end
performance than either fully relocating data to the interleaved
memory tier or executing directly from CXL memory, even when
the DRAM-to-CXL data ratio deviates from the system-optimal
interleaving configuration for peak bandwidth. Moreover, since our
performance model is developed independently of any particular

3We assume that the interleaved memory tier can accommodate the entire workload.
Otherwise, performance will further degrade due to additional data movement.
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Figure 1: Illustration of DRAM and CXL memory interleaving
with a 3 : 2 page placement ratio.

operator, we envision its application not only to broader bandwidth-
intensive workloads but also as a blueprint for future CXL-aware
query execution algorithms.

We summarize our contributions as follows:

(1) We revisit main-memory hash joins in CXL systems from an
end-to-end perspective. Our analysis reveals that the prevailing
practice of relocating the entire workload to the interleaved memory
tier for execution introduces additional data movement overhead,
which can in some cases degrade performance rather than improve
it.

(2) We develop a simple yet generic performance model and ad-
vocate a novel execution strategy for main-memory hash joins in
CXL systems. We show that by judiciously moving a portion of
data from CXL to DRAM, hash joins can effectively balance the cost
of data movement and the benefits of increased bandwidth during
join processing, resulting in improved overall performance.

The remainder of the paper is organized as follows. Section 2
discusses background and related work. Section 3 presents the
design tradeoffs of main-memory hash joins on CXL platforms
and introduces our performance model. Section 4 provides our
experimental evaluation. We conclude in Section 5.

2 BACKGROUND AND RELATED WORK

2.1 The CXL Memory Expansion

Compute Express Link (CXL) is a promising technology to break
through the memory scaling wall. It introduces a set of cache coher-
ence protocols and device types [23], among which type-3 devices
are specifically designed for memory expansion [16, 28]. In addition,
the CXL specifications 2.0 and 3.0 support rack-scale memory pool-
ing and sharing, offering increased memory resource per machine
without significantly raising economic cost [6, 16, 23, 26, 30].

As an open industry standard [23], CXL memory has been adopted
by various vendors [27], resulting in CXL memory implementations
with varying performance characteristics, particularly in terms of
access latency and bandwidth [16, 24]. Nevertheless, all implemen-
tations share common traits: cost-efficient memory scaling, higher
access latency, and lower bandwidth compared to DRAM [10, 30].

Although CXL memory alone does not offer higher bandwidth
than DRAM, its auxiliary bandwidth from the PCle interface can
supplement the local DRAM bandwidth, yielding an aggregate
bandwidth that exceeds what either memory can provide in isola-
tion [8, 24, 26]. To leverage this, DRAM and CXL memory pages
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should be interleaved to form a unified memory tier (see Figure 1 for
an illustration). The optimal interleaving ratio depends on the sys-
tem’s bandwidth characteristics, typically proportional to the ratio
of DRAM bandwidth to CXL memory bandwidth [8, 18, 22, 24, 26,
34]. Since DRAM bandwidth usually exceeds that of CXL memory,
the optimal configuration includes more DRAM pages than CXL
memory pages. Currently, this memory interleaving can only be
configured at the operating system level. Once set, the interleaving
ratio is fixed and shared across all user space applications [20, 26].

Because of this aggregate system-level bandwidth, prior work [8,
13, 22, 24, 26] recommends processing bandwidth-intensive work-
loads by first constructing an interleaved memory tier using the
aforementioned optimal ratio (i.e., the DRAM-to-CXL bandwidth
ratio) and then relocating the workload to this tier for in-place
execution. However, as we argue in this paper, such a strategy over-
looks the cost of additional data movement and therefore warrants
re-evaluation.

2.2 Main-Memory Hash Joins

Main-memory hash joins are central to query processing in modern
DBMS and have been extensively studied for decades. Research and
practice have converged on two dominant algorithms: partitioned
hash join (PHJ) [2, 5, 21] and non-partitioned hash join (NPH]J) [3, 4].

PHJ is motivated by the view that cache miss penalties are the
primary bottleneck in the memory era. It follows a partition-then-
join paradigm: input tables are first partitioned into cache-sized
chunks using radix partitioning [2, 5], after which join operations
can be executed entirely within the cache, avoiding cache misses.
In PHJ, the partition phase is the dominant contributor to execution
time. While various techniques have been proposed to accelerate
this phase [21], its cost often remains significant.

NPHJ, by contrast, leverages hardware capabilities such as simul-
taneous multithreading (SMT) and out-of-order execution (OOE)
to hide cache miss latency. It implements the conventional two-
phase hash join: the build phase constructs the hash table, and the
probe phase queries over it. As in typical analytical workloads, the
build side is smaller than the probe side, making the probe phase
dominant in NPH]J execution.

Both PHJ and NPH]J are known to be bandwidth-intensive [2—
4], and are thus expected to benefit from the aforementioned DRAM
and CXL memory interleaving configuration. However, as we demon-
strate in the sections that follow, this strategy is not always optimal
in end-to-end scenarios. A more judicious placement of data across
DRAM and CXL memory can yield better performance, even when
the allocation ratio deviates from the system-optimal interleaving
configuration for peak bandwidth.

3 HASH JOINS IN CXL SYSTEMS

We examine the design choices for main-memory hash joins in a
genuine CXL-equipped system and introduce a performance model
that guides the amount of data to be moved from CXL memory to
DRAM for optimal join performance. Notably, this model is not
limited to hash joins alone; it can be applied more broadly to any
bandwidth-intensive applications to support better design tradeoffs
in CXL-enabled platforms.
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Figure 2: (a) The memory traffic ratio T(x), corresponding to
the ratio of CXL to DRAM page access counts, as a function
of the DRAM portion x. The green dashed line denotes equal
traffic to DRAM and CXL memory, while the red dashed line
marks the optimal traffic ratio for the system. (b) Data move-
ment throughput measured across different DRAM portions
x, with the red dashed vertical line highlighting the configu-
ration point x = @, which corresponds to the optimal DRAM
traffic ratio on our system (@ = 60%, f = 40%).
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Figure 3: Workflow illustrating partial data movement fol-
lowed by the subsequent query execution.

Before presenting our analysis, we first examine data movement
behavior in CXL systems, a foundational aspect in performance for
data-intensive workloads.

3.1 Preliminary Analysis of Data Movement

A CXL system delivers maximum bandwidth when DRAM and
CXL memory are accessed at a system-specific ratio. To fully utilize
this bandwidth, memory accesses must be carefully distributed
across both memory types. The most common and straightforward
approach is to construct a new interleaved memory tier and move
data from CXL memory into it.

While this setup ultimately ensures that data pages are dis-
tributed according to the optimal interleaving ratio, the data move-
ment phase (from CXL memory to the interleaved tier) introduces a
mismatch between the actual memory traffic ratio and the system-
level optimal ratio. This is because moving pages results in equal
memory footprint at both the source (CXL memory) and the desti-
nation (the interleaved memory tier). If the destination interleaved
tier is already configured with the optimal DRAM-to-CXL ratio, the
act of moving data into it will disproportionately increase traffic
to CXL memory. This imbalance prevents the system from fully
leveraging available DRAM bandwidth during the movement phase,
resulting in suboptimal data movement throughput.

To support this claim, we construct a mathematical performance
model. Assume we have a CXL-equipped machine, of which the
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system-wise memory bandwidth maximized at an optimal DRAM-
to-CXL page ratio of « : f. Meanwhile, we configured an interleaved
memory tier with an arbitrary DRAM-to-CXL page ratio of x : y,
and we are now moving pages from CXL memory to this interleaved
memory tier. Since the data movement is actually sequentially
duplicating memory pages from the source to the destination, the
memory traffic to the source memory address and the destination
address is equivalent. From the perspective of memory traffic to
the memory devices, as the destination is interleaved across DRAM
and CXL memory, the total memory traffic therefore leans towards
CXL memory. Consequently, the memory traffic to CXL memory
becomes x + 2y while the memory traffic to DRAM is just x. As
x and y represent percentages, we have y = 100 — x for the data
movement phase. Thus, we can model the ratio of CXL memory to
DRAM page accesses as a function of x:

_x+2y  x+2X(100-x) 200
- x T ox

-1 1)

We plot the function in Figure 2(a) and observe that, during
data movement, the overall memory traffic ratio of CXL-to-DRAM
approaches but never reaches the optimal system-level ratio (i.e., g)
that offers the maximum bandwidth, even as the DRAM page ratio
in the interleaved memory tier approaches 100%. To validate this
behavior, we conduct a microbenchmark and present the result in
Figure 2(b), which shows that data movement throughput increases
monotonically as the DRAM portion in the destination interleaved
memory tier increases. In contrast, moving pages to an interleaved
tier at the optimal system-level ratio (i.e., x = a in Figure 2(b) ) yields
only moderate throughput. Since the near-future CXL memory
technology is not expected to surpass DRAM in bandwidth, we
conclude that moving data directly from CXL to DRAM achieves
higher throughput than moving data to any interleaved memory
tier.

3.2 An End-to-End Performance Model

We now present an end-to-end performance model for main-memory
hash joins in CXL memory systems. Hash joins are generally con-
sidered blocking operators, and both PHJ and NPH]J exhibit this
behavior by executing across distinct phases. Despite their differ-
ences, all execution phases of PHJ and NPH], excluding the PHJ join
phase (explained in Section 3.3) , can be abstracted into a common
procedure: a data movement phase followed by query execution
(see Figure 3). This procedure model is not limited to hash joins and
is applicable to other bandwidth-intensive operations that involve
data movement.

Suppose we are executing a bandwidth-intensive operation, where
the corresponding data pages initially reside in CXL memory to
conserve limited DRAM capacity. Since interleaving DRAM and
CXL memory at a system-specific optimal ratio yields the highest
overall bandwidth, it is desirable to execute the operation within
this interleaved memory tier.

However, as shown in Section 3.1, relocating the entire dataset
into the optimally interleaved memory tier results in lower through-
put than moving the same data directly to DRAM. We therefore
propose an alternative approach: instead of moving the entire set
of data pages, we relocate only a portion of data to DRAM.
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This strategy provides three-fold benefits: (1) Moving only a por-
tion of the data reduces the total number of data pages that must be
transferred, thereby lowering the overhead of the data movement
phase. (2) The data placed in DRAM contributes to DRAM-side
traffic during the subsequent query execution. By adjusting the
portion of data moved, we can approximate or even match the
system-optimal interleaving ratio, enabling near-maximum band-
width for execution. (3) This partial movement approach introduces
flexibility, allowing us to balance the cost of data movement with
the performance gains from high bandwidth query execution. As a
result, we can achieve improved end-to-end performance by tuning
the movement ratio accordingly.

We now propose a performance model to analyze the above
bandwidth-intensive procedure. Suppose a query execution phase
achieves a throughput of r tuples per second when executed en-
tirely in CXL memory. The corresponding normalized cost can be
expressed as:

1
cost; = - )

Next, consider a scenario where a fraction x of the data pages is
moved from CXL memory to DRAM, and the system supports a data
movement throughput of p tuples per second. In addition, assume
that the subsequent query execution phase achieves a combined
throughput of g tuples per second, when accessing x fraction of
the data from DRAM and the remaining 1 — x from CXL memory,
we can derive the corresponding normalized cost as: £ + L.

Recall that p denotes the data movement throughput from CXL
memory to DRAM, which is a system-specific parameter and is
independent of the data movement fraction x. We thus define p = kr
to relate it to r, where k is a system-dependent coefficient.

For g, since it directly depends on the fraction x of data pages
moving to DRAM, we express q as q¢ = f(x)r. Existing studies have
demonstrated that the system’s aggregate bandwidth increases
monotonically as the DRAM portion grows from 0 to the optimal
ratio «, and decreases monotonically beyond « [8, 24, 26]. This
suggests that choosing x > « is not meaningful, as it incurs higher
data movement cost while offering less bandwidth than moving
exactly « fraction. Therefore, we restrict the DRAM portion x to
the range [0, a].

To model f(x), we use a linear approximation f(x) = mx + 1,
where m is a system-specific coefficient. Accordingly, the normal-
ized cost £ + L becomes:

P q
_x 1 x 1 x 1

C08t2_5+5_ﬁ+f(x)r_ﬁ+m-
Although the linear function is a simplification, it aligns with trends
observed in bandwidth scaling behavior reported in prior work [8,
13, 16, 20, 24, 26]. While the actual relationship may not be linear,
as shown in Section 4, this linear model offers sufficiently accurate
performance predictions for practical purposes.

To justify the data movement strategy, cost; < cost; must hold.

®)

We define the following function to represent the % ratio:
1
- kf(x) kmx + k
g = gy = L o ke )
Pt f(x)x+k mx?+x+k

where a larger value of g(x) indicates greater benefit from data
movement. In order to identify the best value of x, we take the
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derivative of g(x):

(mk —m?x? - 2mx — l)

k
g9'(x) = ®)

(mx? +x +k)?
and derive that the maximum value of g(x) is achieved when x =

@. Note that this result is valid only when x < a, as our model
assumes the valid domain of x is within [0, a]. If x > a, we cap x
at o to avoid excessive data movement and to prevent bandwidth
degradation caused by an inferior memory access ratio.
Substituting the optimal x back into Equation 4, we derive the

. mk S .
— >
expected performance gain, k1’ which is greater than 1 if mk

1, indicating a beneficial effect from data movement. If mk < 1, the
optimal x becomes negative, suggesting that no data movement
should occur and the system should proceed directly to in-CXL
query execution. Overall, the maximum expected performance gain
is expressed as,

mk k> 1
L .

¢(m k) =4 2Vmk — 1 , (6)
1, mk < 1.

which captures the upper bound of the achievable performance
gain from partial data movement under our model.

3.3 Hash Join Using the End-to-End Model

We now apply the end-to-end performance model to main-memory
hash joins. For PHJ, the model accelerates the partition phase by

judiciously moving a portion of the input tables equal to @
to DRAM, thereby allowing the operation to leverage increased
aggregate bandwidth. This DRAM portion value is suggested from
our performance model, and does not need to follow the optimal
interleaving ratio for peak system bandwidth, which may incur
unnecessary data movement overhead. Meanwhile, the destination
for partitioned output should be the interleaved memory tier con-
figured with the optimal system-level interleaving ratio, for the
purpose of having highest memory bandwidth in materialization.
For the PHJ join phase, the model is not applicable, as it performs
cache-level join by a single direct scan over cache-sized partitions,
which already reside in the interleaved memory tier and has no
need of additional data movement. Since the partition phase domi-
nates the execution time of PHJ [2, 5, 21], the proposed procedure
can yield substantial performance improvements.

For NPH], however, our approach can be applied to both the
build and probe phases, and we can estimate the performance gain
from Equation 6 directly.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup

We conduct evaluation on a genuine CXL-equipped platform com-
pliant with the CXL 1.1 specification [23, 27]. The host machine
is configured with 32GB of DDR5 DRAM, offering a peak band-
width of 30.01GB/s. The attached CXL type-3 memory provides
64GB of capacity and achieves 20.95GB/s bandwidth over PCle 5.0.
Following previous studies [8, 13, 20, 24, 26], we configure DRAM
and CXL memory interleaving at various ratios. We find that a 3:2
DRAM-to-CXL interleaving ratio yields the maximum achievable
aggregate bandwidth in our system, reaching 47.50GB/s.
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Figure 4: Hash join performance comparison across varying input sizes. The stacked bars show the runtime breakdown, with
segments (bottom to top) representing memory movement (if applicable), partition/build, and join/probe phases, distinguished
by solid fill, forward slash (//), and backslash (\\) hatching patterns, respectively.

Table 1: Measured parameters and expected throughput gains
on our platform.

Algorithm ‘ k ‘ ‘ x* = @ i ‘ () |
PHJ 2.3534 | 1.0977 0.5528 1.1703
NPH]J 3.7879 | 0.3641 0.5104 1.0214

 x* denotes the optimal fraction of data to be moved from CXL memory to DRAM.
* g(x)| =+ represents the expected throughput improvement when using the
optimal setting x = x*.

We adopt representative implementations of main-memory hash
joins and evaluate them on the canonical synthetic equi-join bench-
mark [2-4, 7, 21]. The benchmark consists of input relations with
cardinalities of 16M, 64M, and 256M, with a fixed tuple size of 16
bytes. In our experiments, we fix the probe side cardinality at 256M
while varying the build side cardinality (16M, 64M, and 256M). This
setup allows us to evaluate performance across varying build-to-
probe ratios, thereby assessing the effectiveness and robustness of
our approach.

Throughout evaluation, the input data is initially stored in CXL
memory. We organize our study by algorithm and evaluate the fol-
lowing four execution strategies: (1) executing the join directly in
CXL memory, (2) fully moving the data to DRAM followed by join
processing in DRAM, (3) fully moving the data to an interleaved
memory tier configured with the system optimal DRAM-to-CXL
ratio, followed by join processing in that tier, and (4) partially mov-
ing an optimal fraction of the data, as guided by our performance
model (Section 3.2), and performing the join by accessing DRAM
and CXL memory in parallel. In all strategies, we place intermediate
results in the interleaved memory tier configured at the optimal
DRAM-to-CXL ratio to enable faster processing ¢. Moreover, in
order to apply the performance model, we first profile the system
to extract the necessary throughput parameters, from which we
derive the values of k and m, calculate the optimal data fraction x*

“Intermediate results refer to the PHJ cache-sized partitions and the NPH]J hash table,
which require materialization in memory and therefore do not conflict with our
performance model.

to be moved to DRAM, and estimate the corresponding expected
performance gain, as listed in Table 1.

4.2 Evaluation Results

Figure 4 presents the performance of PHJ and NPH]J under four
execution strategies. In general, PHJ outperforms NPH]J by effec-
tively mitigating cache miss penalties, consistent with observations
in prior work [2, 3, 21]. Moreover, when benchmarked against
competing methodologies, our proposed strategy exhibits the best
performance, outperforming alternatives across all investigated
algorithms and build-to-probe cardinality ratios. This is because it
leverages the performance model to judiciously move an optimal
portion of data to DRAM, enabling high bandwidth during subse-
quent query execution while avoiding superfluous data movement.

Across both join variants, our approach yields 22.20% and 3.59%
runtime reduction for PHJ and NPHJ, respectively, compared to the
second-best strategy (i.e., in-CXL join processing). These improve-
ments closely match the expected gains reported in Table 1, thereby
validating the accuracy of our model. Furthermore, the observed
performance improvements exhibit stability across all evaluated
workloads, irrespective of the build-to-probe cardinality ratio. This
consistency strongly indicates that our proposed model possesses
sufficient robustness for a diverse range of bandwidth-intensive
relational workloads.

Compared to PHJ, the performance gain for NPH]J is inherently
lower, primarily due to the smaller m value in Equation 4. This lim-
ited runtime reduction mainly stems from the probe phase, where
memory traffic is majorly dominated by random accesses to the
hash table. Because the hash table already resides in the interleaved
memory tier with the optimal DRAM-to-CXL ratio after the build
phase, the choice of the probe-side data source has minimal impact
on performance. As a consequence, the benefits of our approach
are more constrained.

Excluding our proposed scheme, both PHJ and NPH]J perform
better with direct in-CXL processing than relocating data entirely to
a faster memory tier for in-place processing, a result that validates
the benefits of minimizing data movement. Regarding subsequent
execution phases, we observe negligible performance variation
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Figure 5: Performance comparison with respect to x, denoting
the portion of data moved from CXL memory to DRAM. The
blue and red curves represent measured throughput gain and
model-estimated gain g(x), respectively. The vertical dotted
line (green) marks the upper bound of the x domain defined
by the performance model.

across strategies. This uniformity arises because all strategies place
intermediate data, whether PHJ partitions or NPHJ hash tables,
in the interleaved memory tier, thereby ensuring high bandwidth
for the remainder of the query. When comparing full data migra-
tion strategies, we find that replicating data to DRAM incurs lower
movement costs than relocating it entirely to the interleaved tier,
corroborating our analysis in Section 3.1. Additionally, the perfor-
mance divergence between these strategies underscores the critical
importance of accounting for data movement overhead when de-
signing join processing algorithms for CXL systems.

4.3 Sensitivity Study of the Performance Model

We now evaluate the sensitivity of the performance model. Us-
ing partitioning as a case study, we vary the x fraction of data
moved from CXL memory to DRAM and measure the correspond-
ing throughput improvement. We also plot the model-predicted
performance gain g(x) in Figure 5 for comparison.

We observe that the optimal data movement x ratio predicted
by our model (0.5528) is close to the empirically determined op-
timal ratio (0.4972), and the estimated performance gain (17.03%)
is reasonably aligned with the observed maximum improvement
(24.20%) 3. The actual optimal x ratio being slightly lower than the
model prediction is due to the sublinear bandwidth improvement
rate near the system-level optimal interleaving ratio « (detailed in
Section 3.2 where f(x) = mx + 1), which allows similar bandwidth
with less data movement.

For values of x that deviate significantly from the optimal point
(0.5528), the predicted gain also diverges from the measured gain;
however, the overall trend remains consistent. Importantly, the
model suggests an x value smaller than «, validating its practical
utility. In summary, the proposed model provides effective guidance
for determining the optimal data movement fraction and achieves
high accuracy in doing so.

SThese gains are for the partitioning phase only and are therefore higher than those
reported in Table 1, as the proposed approach is not applied to the join phase.
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Figure 6: Projected performance improvement from our
model across different values of 1. The blue vertical dashed
line indicates our system configuration point at 1 = 2.5353
(with k = 2.3534, m = 1.0977).

4.4 Future Trends And Beyond

As CXL technology is still in its nascent stage, we project the nor-
malized performance improvement for future CXL systems based
on Equation 6. Letting A = mk, we plot the expected performance
gain as a function of A in Figure 6. We observe that as A increases, the
predicted gain from our approach grows monotonically. This trend
is particularly insightful, as the industry roadmap points toward
higher bandwidth for both CXL and PCle interfaces [10, 23, 28, 34].
Meanwhile, we anticipate that CXL memory bandwidth will re-
main lower than that of DRAM, implying that coefficients k and m
will likely stay above 1, given that the parallel use of DRAM and
CXL memory yields higher aggregate bandwidth than relying on
CXL memory alone. As a result, the proposed partial data move-
ment strategy will continue to offer benefits in next-generation
CXL-equipped platforms.

Additionally, since CXL technology fundamentally represents
memory expansion via interconnects, a natural question arises:
does our proposed approach extend to similar technologies relying
on interconnects? We posit that our methodology applies to any
interconnect that delivers additional memory bandwidth indepen-
dent of local DDR channels, including NVIDIA NVLink and NUMA
interconnect technologies [19, 20, 24, 29, 33]. In such architectures,
our approach can judiciously determine the optimal portion of data
to migrate to local DRAM, effectively balancing data movement
costs against bandwidth gains. Moreover, given the constraints
of the DRAM scaling wall, this supplemental bandwidth will play
an increasingly pronounced role in holistic system performance.
Consequently, our approach serves as a vital blueprint for optimiz-
ing applications with high bandwidth demands across emerging
heterogeneous memory hierarchies.

5 CONCLUSION

In this paper, we revisit main-memory hash joins in CXL-enabled
systems. We propose a simple yet generic performance model that
balances the cost of data movement against the benefit of increased
system bandwidth. Guided by this model, we advocate a new ex-
ecution strategy: judiciously moving a portion of data from CXL
memory to DRAM prior to join processing, which enables higher
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bandwidth by accessing both memory types in parallel. We validate
our approach through experimental evaluation, and the observed
performance improvements confirm the accuracy and effectiveness
of the proposed model.

Looking ahead, we plan to extend this framework to other bandwidth-

intensive query operations and explore its applicability to multi-join
query processing in CXL-equipped systems. Furthermore, we aim to
validate its generalization to diverse bandwidth-critical workloads
atop alternative memory expansion technologies.
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