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ABSTRACT
For decades, SQL has been the default language for composing

queries, but it is increasingly used as an artifact to be read and

verified rather than authored. With Large Language Models (LLMs),

queries are increasingly machine-generated, while humans read,

validate, and debug them. This shift turns relational query lan-

guages into interfaces for back-and-forth communication about
intent, which will lead to a rethinking of relational language design,

and more broadly, relational interface design.

We argue that this rethinking needs support from an Abstract
Relational Query Language (ARQL): a semantics-first referencemeta-

language that separates query intent from user-facing syntax and

makes underlying relational patterns explicit and comparable across

user-facing languages. An ARQL separates a query into (𝑖) a rela-
tional core (the compositional structure that determines intent), (𝑖𝑖)

modalities (alternative representations of that core tailored to differ-
ent audiences), and (𝑖𝑖𝑖) conventions (orthogonal environment-level

semantic parameters under which the core is interpreted, e.g., set vs.

bag semantics, or treatment of null values). Usability for humans or

machines then depends less on choosing a particular language and

more on choosing an appropriate modality. Comparing languages

becomes a question of which relational patterns they support and

what conventions they choose.

We introduce Abstract Relational Calculus (ARC), a strict gener-
alization of Tuple Relational Calculus (TRC), as a concrete instance
of ARQL. ARC comes in three modalities: (𝑖) a comprehension-style

textual notation, (𝑖𝑖) an Abstract Language Tree (ALT) for machine

reasoning about meaning, and (𝑖𝑖𝑖) a diagrammatic hierarchical-

graph (higraph) representation for humans. ARC provides the miss-

ing vocabulary and acts as a Rosetta Stone for relational querying.
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1 INTRODUCTION
New interfaces for humans and machines. Several recent ef-
forts question SQL as the default relational query language (QL)

and propose to either extend or completely replace it [8, 46, 52]. Ex-

amples in these debates include whether nested correlated queries

are inherently hard for users to follow and should be replaced with

more dataflow (algebraic) abstractions, and whether set or bag se-

mantics are the right choice (e.g., debated at the DBPL workshop

at SIGMOD’25 [34]). Less explored, however, is a more basic rep-

resentational question: 1 How should we represent the intent of

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2026. 16th Annual Conference on

Innovative Data Systems Research (CIDR ’26). January 18-21, Chaminade, USA

Human Machine

Abstract Relational Query Language

Intermediate Representation

Compiled Code

User-level Query Language

Comprehension
Syntax

Relational
Diagram

Abstract 
Language Tree

more
abstract

≡≡

Figure 1: An Abstract Relational QL (ARQL) abstracts away from
syntactic details of a query to a higher-level representation. Just
as Intermediate Representations (IRs) enable query optimization, a
more abstract representation can support semantic understanding
of a query’s intent. Both humans and machines can benefit from
modalities tailored to their needs. Conventions (not shown) factor
out orthogonal design choices that don’t affect the relational pattern.

a query so that its relational structure is explicit and comparable
across different surface syntaxes? How can we describe how a query
composes its inputs (i.e., the base relations) to define query intent,
independent of the idiosyncrasies of any particular query language?

At the same time, relational queries are increasingly produced

by machines and validated by humans. In this setting, the user

interaction with relational databases changes: now SQL is not just

a language for users composing queries, but it also increasingly

serves as amessage format betweenmachine generation and human

validation. As noted in the Cambridge report [7], these develop-

ments “potentially change howwe interface with relational databases,”
shifting emphasis from query composition to query interpretation.

“The essential skill is no longer simply writing programs but learn-
ing to read, understand, critique and improve them instead” [51].
Since LLMs can hallucinate or introduce errors, “effective explana-
tion mechanisms ... become increasingly important” [7]. This raises
a second question: 2 How should machine-generated queries be
presented to users so they can validate them and provide feedback?

The challenge is not limited to human-facing interfaces. Machine-

facing tasks such as semantic similarity search and retrieval also

require representations aligned with meaning rather than syntax.

SQL’s surface syntax is a poor proxy for intent: semantically equiv-

alent queries can differ substantially in syntactic structure, while

syntactically similar queries may encode different semantics. In the

NL2SQL domain, current benchmarks often rely on surface-level

criteria such as exact string match or execution match. Since those

fail to capture deeper semantic relationships, Floratou et al. [22]

argue for “a shift towards intent-based benchmarking frameworks.”
This raises a third question: 3 What language abstraction should
an LLM (or future machine-tool) use to internally reason about query
intent and semantic similarity in a way that is faithful to relational
meaning?

Our Suggestion.We believe that database research needs new
vocabulary to analyze relational intent across languages and a
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semantics-focused representation of relational languages that de-

couples intent from user-facing syntax while supporting multiple

modalities (i.e., mechanically inter-translatable representations of

the same language tailored to different audiences, without treating

eachmodality as a separate language). We call such a representation

an Abstract Relational Query Language (ARQL).
It is abstract because it factors out differences in concrete syntax

and design choices and instead focuses on a small set of composi-

tional relational primitives shared across relational query languages.

In this sense, a representation is more abstract when it makes the

relational intent of a query [14, 25] explicit without relying on

syntactic shortcuts or being forced to expose “conventions” in the

language. In general, we refer to a language-agnostic description

of how data is transformed from input to output as the relational
pattern of a query [30]. Our goal is a clean separation of concerns.
Just as Intermediate Representations (IRs), such as SDQL [50] and

Substrait [5], decouple front-end parsing from optimization and

code generation, we want to enable a syntax-agnostic discussion
of language features at a more conceptual level. This lets us treat
relational patterns as modules (Section 2.13.2) and several issues

that are not necessarily part of the relational pattern of a query

as orthogonal choices (“conventions”, see Section 2.6), such as the

convention of using set or bag semantics, the blurry distinction

between declarative and procedural languages, the treatment of

null values, typing and casting conventions, as well as different

initializations of aggregate functions (e.g., 0 or null for sum). It also
allows us to discuss the many syntactic variants that SQL permits

for expressing basically the same intent, as well as when rewrites

are not equivalent (e.g., the COUNT bug, see Section 3.2).

Another concrete use case is NL2SQL. Rather than generating

SQL text directly, an NL2SQL system can generate an ARQL rep-

resentation of intent and then render it into SQL. In this paper,

our concrete ARQL instance is Abstract Relational Calculus (ARC)
(introduced in Section 2) with a machine-facing Abstract Language

Tree (ALT) modality, which provides a natural intermediate target

for NL2SQL systems.

Modalities instead of languages. An ARQL does not have

just one representation. Instead, we propose developing alternative

modalities of the same language, each tailored to different purposes.

These modalities offer alternative views of a query, targeted for

either human interpretation or machine reasoning.

Concretely, what are usually called Abstract Syntax Trees (ASTs)
tend to remain too close to the concrete syntax of a language. For

example, SQLGlot’s AST [4, 56] places JOINs as children of SELECT

nodes, which reflects surface-level parsing (concrete syntax) rather

than abstract semantic relationships. We argue that such represen-

tations fall short as truly abstract representations of a query.

We use the term Abstract Language Tree (ALT) for a universal,
hierarchically structured representation of the semantics of a query
rather than its syntax. We originally used the term Abstract Lan-
guage Higraph (ALH) instead of ALT. The motivation is that ASTs

and ALTs are “trees” only with respect to the containment (nesting)

structure (and even that can be blurred by correlated constructs

such as LATERAL joins). Once name resolution is performed and

bindings are established (i.e., identifier occurrences are connected

to their declarations via cross-references, and the resulting struc-

ture is often called an annotated/decorated AST [13]), the overall

COLLECTION
├─ HEAD: Q(A)
└─ QUANTIFIER ∃

├─ BINDING: r ∈ R
├─ BINDING: s ∈ S
└─ AND ∧

├─ PREDICATE: Q.A = r.A
├─ PREDICATE: r.B = s.B
└─ PREDICATE: s.C = 0

(a)
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Figure 2: (a): Linked Abstract Language Tree (ALT) for TRC (1). The
overlaid arrows show the result of the linking step and are conceptual
only. (b): Diagrammatic higraph representation of the linked ALT
as a variant of Relational Diagrams.

structure is better viewed as a hierarchical graph (a tree of contain-

ment with additional edges). This also matches the intuition that

lexical scopes correspond to nested regions (Fig. 2b). Higraphs [36]
formalize exactly this combination of nesting and linking: nodes

may be nested within nodes (capturing containment/scopes) while

edges capture references. However, they are not widely known, and

the term is unfamiliar to many readers (for a simplified and acces-

sible higraph formalism, see the online appendix of [28]). Thus, we

ultimately kept the simpler term Abstract Language Tree (ALT):

the conceptual shift from surface syntax to the underlying semantic

operations is already substantial, while the remaining intuitions

from ASTs carry over, and our higraph modality continues to make

the hierarchical graph (higraph) data structure explicit.

Similar to how query graphs support the optimization of conjunc-

tive queries [44], we believe ALTs provide a better data structure for

semantic analysis of relational queries. For an ARQL, the language-

independent ALT is ideally identical to its AST, because the syntax

reflects its semantics.

Importantly, ALTs can also be rendered diagrammatically for

human users as hierarchical graphs (higraphs). In that form, the

nested scopes of nodes in the ALT are replaced by a nesting of

nodes. Prior user studies have shown that Relational Diagrams
can help users understand relational structures faster and more

reliably [29, 41]. This emphasizes a key distinction: language design
should not be conflated with interface usability. Whether users “like”

a language is a question of modality, not of the language core itself.

Instead, modalities should be designed with target consumers in

mind, i.e. human-facing modalities for accurate semantic under-

standing and debugging, and machine-facing modalities for tasks

such as semantic similarity assessment or query transformation.

Thus, an ARQL provides the relational structure, while modalities

are lossless presentations of that structure for different consumers.

While we agree with the observation that “the idea of a single,
universal language or paradigm ... covering all data programming
needs is unlikely” [7], we argue that many of these needs can be

addressed at the level of modalities instead of languages. The goal

of an ARQL is not to unify all QLs under a single syntax, but to

enable meaningful comparisons across languages in terms of their

underlying relational patterns, and different modalities can serve

the respective needs of humans and machines. The translation

between modalities can also be automated.

Conventions instead of languages. In Green’s cognitive di-

mensions of notations [32] a “system” consists of notation (the

representational form) and an environment (the surrounding tool-

ing). Similarly, we suggest distinguishing between a language (a
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representation that encodes the relational composition of a query

in a particular surface syntax) and a convention (an orthogonal

design decision that can be switched and will affect the behavior

but not the relational core). For example, the aggregate sum(R.A)
initializes with null in SQL, but with 0 in Soufflé (Section 2.6). This

difference is a design decision. It is a convention that does not affect

the way a relational query composes its various components to

encode a meaning. An ARQL focuses only on the relational patterns

of a query and does not expose conventions which are specified

separately in the surrounding environment. With this change, a

sufficiently generic language design could be interpreted under

either set or bag semantics. It is just a switch that we flip on or

off. While discussion of set vs. bag semantics is still important for

query optimization, it becomes orthogonal to “language design.”
Contributions. 1 We suggest that the database community

develops abstract representations of relational queries that can em-

bed relational query patterns across user-facing relational query

languages. This effort can support, but is orthogonal to, the devel-

opment of concrete user-level Query Languages (QLs) and efforts

on Intermediate Representations (IRs) (Section 1). 2 We propose a

concrete formulation of such a language called Abstract Relational

Calculus (ARC), which is a strict generalization of Tuple Relational

Calculus (TRC) that assumes flat relational inputs and outputs and

so far has 3 modalities. By making implicit relational constructs

and dependencies explicit, ARC abstracts and surfaces common

query patterns found across different relational languages in a more

explicit representation. By treating human- and machine-facing

representations as modalities of the same underlying calculus, it

supports a more principled discussion of relational language de-

sign, for both the future human and machine audiences (Section 2).

3 We show ARC representations of running examples from recent

and older papers, which we believe support an ongoing discussion

(Section 3 and examples interspersed throughout Section 2).

2 ABSTRACT RELATIONAL CALCULUS (ARC)
We formalize Abstract Relational Calculus (ARC), a strict general-
ization of Tuple Relational Calculus (TRC) that models relational

query languages in a collection framework.
1

ARC is an Abstract Relational Query Language (ARQL): a

semantics-first reference metalanguage that can encode the core

relational query patterns of SQL and various proposed alternatives.

We present ARC in 3 modalities: (𝑖) a comprehension-based syntax

that generalizes TRC, (𝑖𝑖) an Abstract Language Tree (ALT) suited

for machine reasoning, and (𝑖𝑖𝑖) a diagrammatic higraph modality

suited for human inspection. Although equivalent, each modality

is tailored to a different audience.

2.1 Starting with TRC
We start with TRC because we have a strong conviction that the

named calculus perspective is a more suitable abstraction for an

ARQL than positional addressing. Codd [11] proposed to “replace

1
We were considering the more explicit name Abstract Tuple Relational Calculus to
emphasize the lineage and leave space for a possible future Abstract Domain Relational

Calculus. But the more we thought about it, the more we came to believe that the

domain perspective is not well-suited for an ARQL (though it may well be a suitable

choice for a user-facing syntax as in Rel [8]). Alternative names considered were

Generalized TRC and Extended TRC (as in extended relational algebra).

positional addressing by totally associative addressing”, i.e. accessing
values by named attributes rather than by argument position. This

gives us logical independence not only from tuple order (row posi-

tion), but also from attribute order (column positions). Moreover,

Boolean statements in TRC are always domain independent [28] as

long as all range variables are bound to relations, a property that is

not widely known and does not hold for DRC.
Several recent works in our community are inspired by Data-

log, due to its handling of recursion. However, nothing prevents

us from adding recursion in the named attribute perspective (Sec-

tion 2.9). The positional (domain) perspective is also favored for

conciseness: One can simply write 𝑅(𝑥,𝑦) for predicate or function
application instead of ∃𝑟 ∈ 𝑅 [𝑟 .𝐴 = 𝑥 ∧ 𝑟 .𝐵 = 𝑦]. For an ARQL,

however, brevity is diametrically opposed to its goal of surfacing pat-

terns across languages, and making otherwise implicit constructs

explicit. As one example, an assignment predicate 𝑄.𝐴 = 𝑟 .𝐴 in

TRC, {𝑄 (𝐴) | ∃𝑟 ∈ 𝑅 [𝑄.𝐴 = 𝑟 .𝐴]}, has no explicit counterpart

in DRC, where the same binding is implicit in the output tuple

{(𝑥) | 𝑅(𝑥)}. Conciseness is often associated with usability (fewer

letters to type). But we associate usability primarily with the cho-

sen modality rather than the relational core (see Fig. 2a vs. Fig. 2b,

which render the same language in two different modalities; the

diagrammatic modality supports faster human inspection).

Ignoring notational conventions, the following is a valid TRC
query according to a widely used textbook [20]:

{𝑟 .𝐴 | 𝑟 ∈𝑅 ∧ ∃𝑠 [𝑟 .𝐵 = 𝑠 .𝐵 ∧ 𝑠 .𝐶 = 0 ∧ 𝑠 ∈𝑆]}

We make two changes. First, we clarify the scopes. Whenever a

relation variable is quantified, then it is also bound to a relation:

{𝑟 .𝐴 | 𝑟 ∈𝑅, ∃𝑠 ∈𝑆 [𝑟 .𝐵 = 𝑠 .𝐵 ∧ 𝑠 .𝐶 = 0]}

Second, we have stricter scoping rules. We do not allow variables
bound in the body to appear in the head. Instead, we assign values

to the head variables explicitly via an assignment predicate:

{𝑄 (𝐴) | ∃𝑟 ∈𝑅, 𝑠 ∈𝑆 [𝑄.𝐴 = 𝑟 .𝐴 ∧ 𝑟 .𝐵 = 𝑠 .𝐵 ∧ 𝑠 .𝐶 = 0]} (1)

This means that all bindings (e.g., 𝑠 ∈𝑆) are now introduced by an

explicit quantifier. Notice that two bindings can share the same

quantifier (∃𝑟 ∈𝑅, 𝑠 ∈𝑆). We call the extra predicate 𝑄.𝐴 = 𝑟 .𝐴 an

assignment predicate to distinguish it from the other comparison
predicates. This membership-style formalization of TRC is devel-

oped in great detail in [28].

2.2 Language Modalities
Abstract Language Tree (ALT). Figure 2a shows our formalism of

an Abstract Language Tree (ALT) representation of (1) which makes

this nesting of one or more bindings under a quantifier explicit [28].

Notice that a query (or a collection) consists of a head and a formula

as body, and a quantification starts the body.

We also show conceptual links from predicates to the bindings

of their range variables. These are not typically shown in ASTs,

but they reflect the data structures created after the linking step

and symbol tables are created. Given what we perceive as a con-

fusion about what an Abstract Syntax Tree (AST) is supposed to

represent (recall Section 1), we say ALT but actually think about

this linked and hierarchical data structure as an Abstract Language
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Higraph (ALH). Developing a good set of data abstractions is essen-

tial for solving problems. We believe a hierarchical graph is a good

abstraction for relational structures.

Relational Diagrams (Higraph diagrams). For computational

analysis, this pointer-based hierarchical graph structure is appropri-

ate. For human consumption, we use a diagrammatic representation

of the ALT where scopes represented as nodes in the ALT become

regions, and where the attributes of a table are represented adjacent

to the table name instead of using additional edges. For the relation-

ally complete fragment, these concepts were already formalized

as Relational Diagrams in more detail in [28–30]. A user study

has shown that these diagrams allow humans to recognize and

reason about patterns faster than SQL. The user study was repro-

duced [55]. Two recent tutorials [26, 27] give a detailed comparison

of this visual formalism against prior work.

Two minor differences from that prior work are: (𝑖) we now

explicitly represent existential scopes (previously omitted because,

under set semantics, only negation requires an unambiguous scope

interpretation; this changes under bag semantics and aggregation),

and (𝑖𝑖) we visually decorate assignment predicates (crucial for

nested comprehensions).

2.3 Interpreting TRC as set comprehension
Everything so far was grounded in first-order logic. We next inter-

pret relational query languages in a collection framework, viewing

a query as an expression in a comprehension calculus with tuple

variables, quantifiers, and scoping. This interpretation will allow

us later to go beyond first-order logic, yet remain declarative.

A declarative specification of a set can be given by specifying the

elements that satisfy the properties of the set. For example, for sets

𝑋 and 𝑌 , the subset of their product where the former is smaller

than the latter is the set {(𝑥,𝑦) | 𝑥 < 𝑦 ∧ 𝑥 ∈𝑋 ∧ 𝑦 ∈𝑌 }. With our

stricter scoping rules, we would write it instead as

{(𝑎, 𝑏) | ∃𝑥 ∈𝑋,𝑦 ∈𝑌 [𝑥 < 𝑦 ∧ 𝑎 = 𝑥 ∧ 𝑏 = 𝑦]}

In a Haskell list comprehension syntax, this would be written as
2

[(x,y) | x <- xs, y <- ys, x < y]

with its semantics given by the conceptual evaluation strategy:

for x in X:
for y in Y:
if x < y: yield (x, y)

This nested loop strategy gives both a semantic and operational

definition and is exactly the way we also explain the conceptual

evaluation strategy of SQL in our undergraduate database courses.

In the following, we use this formalism of comprehension of sets

(and more generally collections) yet also deviate in three details:

1) We use a tuple instead of a domain perspective. 2) We have an

explicit notation of scoping: The body can be a logical statement

instead of a conjunction of properties, thus the order of shown pred-

icates does not matter. What matters are the well-defined scopes.

3) We use our stricter rule on heads (heads need to be kept clean).

Notice that allowing nesting in the head is usually the way of

defining calculations with collections and list comprehensions. For

2
Since value variables must start lowercase in Haskell, we use 𝑥𝑠 and 𝑦𝑠 instead of

our otherwise preferred notation 𝑋 and 𝑌 .

select x.A, z.B
from X as x
join lateral (

select y.A as B
from Y as y
where x.A < y.A) as z

on true

(a)

Figure 3: (a): Nested ARC from (2) expressed as lateral join in SQL.

example, in Haskell creating all the squares of even numbers is

canonically written with squaring of numbers happening in the

head:

[x*x | x<-ns, mod x 2 == 0]

Nesting in the head is also useful for the nested relational model,

and used in extensions of Datalog. But nesting in the head is not

needed (Section 2.12) and we believe it is distracting for the flat

(unnested) relational model.

2.4 Composability through orthogonal nesting
We allow arbitrary nesting of comprehensions in the body, i.e. nest-

ing is orthogonal (and therefore compositional): it does not interfere

with or restrict other constructs (subject to scoping rules). For ex-

ample, in Haskell, the following comprehension is allowed:

[(x, z) | x <- xs, z <- [ y | y <- ys, x < y]]

This expression would correspond in SQL to the lateral join shown

in Fig. 3a. It is written in ARC as follows:

{𝑄 (𝐴, 𝐵) | ∃𝑥 ∈𝑋, 𝑧 ∈ {𝑍 (𝐵) | ∃𝑦 ∈𝑌 [𝑍 .𝐵 = 𝑦.𝐴 ∧ 𝑥 .𝐴 < 𝑦.𝐴]} (2)

[𝑄.𝐴 = 𝑥 .𝐴 ∧𝑄.𝐵 = 𝑧.𝐵]}

2.5 Grouping and aggregates in set semantics
Consider the task of summing the salaries of all employees in a table.

Under set semantics, projecting the salary column before applying
an aggregate function removes duplicates, so we obtain the sum of

distinct salaries rather than the sum over all employees. This is

usually not the intended behavior when computing aggregates.

A conceptually simple fix is to apply aggregate functions not

over individual columns but over entire sets of tuples, with each ag-

gregate operating on a designated position of those tuples (e.g.,

the last position in the unnamed perspective). This is the ap-

proach proposed by Klug [40] in his classical 1982 paper, in which

each aggregate function receives its own separate scope.3 Subse-
quent comprehension-based database programming languages (DB-

PLs) [9, 21, 33, 53], including extensions of logic with aggregate

operators [37], and modern Datalog-inspired systems such as Souf-

flé [2] and Rel [8], inherited variants of this formalism.

This formalism has left two important legacies for set-based

languages: (1) Evaluating two different aggregate functions over

the same relation requires two logical copies of that relation because

3
LikeDatalog, Klug works in the unnamed (positional) perspective. To treat aggregates

as ordinary unary function symbols on relations, each aggregate must be tied to a

fixed column in advance. Consequently, applying a sum to the 2nd or the 3rd column

of the same relation requires two different aggregate functions (the column index

is effectively baked into the function name). This need for separate aggregates per

column complicates the formalism notably.
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each aggregate is evaluated in its own independent scope. (2) Except

for Rel [8], aggregate functions in these formalisms return only

their computed results, not the grouped attributes. These attributes

must instead be specified outside the aggregation scope and passed

into it via correlated nesting (a pattern we refer to as “from the

outside in” = FOI).

We discuss these issues in detail after introducing ARC’s han-
dling of aggregates. Notice how ARC serves as a reference language
that provides the vocabulary and structure needed to compare and

reason about the behavior of different languages. In doing so, ARC
abstracts from the idiosyncrasies of each language’s surface syntax
and instead captures their shared underlying semantic structure.

Aggregation in ARC. ARC’s collection framework supports a

conceptual evaluation strategy in which aggregates are defined over
the full join:4 values are accumulated one element at a time, and

multiple aggregates can be evaluated in parallel by reusing the same

scope, as in SQL. Thus, conceptually, an aggregate has two inputs:

the full join (determined by the scope in which the aggregation

predicate appears) and a column identifier (i.e. range variables and

column name, as in TRC). If desired, deduplication of the input

values can be expressed either by first applying a projection or

by using dedicated aggregate functions (e.g., countdistinct instead

of count). To enforce set semantics of the output, deduplication is

applied to the result values of the scope. This is a flexible pattern that

allows ARC to recover the different interpretations of aggregates

from existing relational languages.

Recall that our aim is not to retrofit aggregates into classical first-

order logic [37], but to provide an abstract calculus that can model

the diverse computational patterns (including aggregation) found

in real relational languages. Relational Calculus here is meant as a

more general term than first-order logic. As Date writes [15, Ch. 8]

“calculus ... provides a notation for stating the definition of that desired
relation in terms of those given relations”, and “A fundamental feature
of the calculus is the range variable”, and “variable that “ranges
over” some specified relation.” This definition of calculus naturally

motivates our proposal of Abstract Relational Calculus (ARC), an
abstract relational query language defined in a collection framework

that strictly generalizes TRC.
Consider a simple grouped aggregate query over a binary relation

𝑅(𝐴, 𝐵) that computes, for each distinct value of 𝑅.𝐴, the sum of

associated 𝑅.𝐵 values. ARC expresses this query in comprehension

syntax as follows:

{𝑄 (𝐴, 𝑠𝑚) | ∃𝑟 ∈𝑅,𝛾𝑟 .𝐴 [𝑄.𝐴 = 𝑟 .𝐴 ∧𝑄.sm = sum(𝑟 .𝐵)]} (3)

The aggregation predicate 𝑄.sm = sum(𝑟 .𝐵) accumulates and ag-

gregates values over the set of tuples produced by the conceptual

evaluation strategy.
5
Thus, aggregates appear as operands in predi-

cates. The query has a grouping operator 𝛾 with grouping key 𝑟 .𝐴

that partitions the full join result within the quantifier scope into

groups based on bindings of the grouping key 𝑟 .𝐴. When the aggre-

gate is taken over the entire join result, then we write 𝛾∅ explicitly

(similar to “group by true” in SQL). Thus, the appearance of any

4
Recall that a full join of two or more relations contains no duplicates (i.e. it is a set) if

the input relations are sets as well.

5
Notice that the aggregation predicate serves here simultaneously also as assignment

predicate, although aggregation predicates can also serve as comparison predicates as

we see later.

select R.A, sum(R.B) sm
from R
group by R.A

(a) Grouped aggregate in SQL
COLLECTION
├─ HEAD: Q(A,sm)
└─ QUANTIFIER ∃

├─ BINDING: r ∈ R
├─ GROUPING: r.A
└─ AND ∧

├─ PREDICATE: Q.A = r.A
└─ PREDICATE: Q.sm = sum(r.B)

R

A
Bsum

Q

A
sm

(b) Grouped aggregate in ARC as ALT and higraph modalities

Figure 4: The semantics of a simple grouped aggregate query in a
“from the inside out” pattern represented in SQL (a) and ARC (b), (3).
Red overlay arrows indicate scoping, binding and grouping.

aggregation predicate turns an existential scope into a grouping

scope and requires a grouping operator.

In the comprehension syntax and ALT, the grouping operator is a

child of the quantification scope and turns this scope into a grouping
scope. In the higraph modality, grouped attributes are highlighted

with a gray shade, and the scope is drawn with a double-lined

boundary to indicate a grouping scope (Fig. 4b).

From the inside out (FIO). In ARC, grouping and aggregation

happen on attributes inside a scope, and the resulting grouped

and aggregated attributes are then available outside that scope.

We therefore call this pattern “from the inside out.” It corresponds
exactly to the way SQL would represent the grouped aggregate

query (Fig. 4a) [3, Database 720], and to extended relational algebra:

𝛾𝐴,sum(𝐵)→sm [𝑅]

Rel [8] has the same relational pattern:

def Q(a,sm) : sm = sum[(b) : R(a,b)]

Rel’s interpretation of aggregate queries is that of variable elimina-

tion [38], and the query as written in Rel can be viewed as creating

a lookup function 𝑓 with 𝑓 (𝑎) :=∑
𝑏:𝑅 (𝑎,𝑏 ) 𝑏.

From the outside in (FOI). Several languages represent our
simple grouped aggregate query in a “per-outer-tuple” pattern.

Klug’s formalism [40] uses an unnamed variant of a tuple relational

calculus that uses nesting in the head. Slightly changing the syntax

and porting it to a named perspective, the query would be written

as follows:
6

{(𝑟 .𝐴, sum2{(𝑟2 .𝐴, 𝑟2 .𝐵) | 𝑟2 ∈𝑅 ∧ 𝑟2 .𝐴 = 𝑟 .𝐴}) | 𝑟 ∈𝑅} (4)

Here, the first range variable 𝑟 ∈𝑅 fixes the grouping key 𝑟 .𝐴, and

the second range variable 𝑟2 ∈𝑅 performs the aggregation for each

value in 𝑟 .𝐴.

Hella et al. [37] use the same pattern, but in an unnamed domain

perspective:

(∃𝑦.𝑅(𝑥,𝑦)) ∧ (𝑞 = AggrΣ 𝑧.(𝑅(𝑥, 𝑧), 𝑧)) (5)

In this query, 𝑥 is a free variable, and the conjunct ∃𝑦.𝑅(𝑥,𝑦) range-
restricts its admissible values to those that occur in 𝑅.𝐴. The aggre-

gate AggrΣ 𝑧.(𝑅(𝑥, 𝑧), 𝑧) binds 𝑧 and is parameterized by the free

variable 𝑥 , which serves as the grouping key.

6
Original notation: (𝑣1 [1], sum2 ( (𝑣2 [1], 𝑣2 [2] ) : 𝑅 (𝑣2 ) : 𝑣2 [1] = 𝑣1 [1] ) ) : 𝑅 (𝑣1 ) .
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select distinct R.A,
(select sum(R2.B) sm
from R R2
where R2.A=R.A)

from R

(a) Scalar subquery in SQL

select distinct R.A, X.sm
from R join lateral

(select sum(R2.B) sm
from R R2
where R2.A=R.A) X

on true

(b) Lateral join in SQL

COLLECTION
├─ HEAD: Q(A,sm)
└─ QUANTIFIER ∃

├─ BINDING: r ∈ R
├─ BINDING: x ∈ 
│  └─ COLLECTION
│     ├─ HEAD: X(sm)
│     └─ QUANTIFIER ∃
│        ├─ BINDING: r2 ∈ R
│        ├─ GROUPING: ∅
│        └─ AND ∧
│           ├─ PREDICATE: r2.A = r.A
│           └─ PREDICATE: X.sm = sum(r2.B)
└─ AND ∧

├─ PREDICATE: Q.A = r.A
└─ PREDICATE: Q.sm = x.sm

X
R

B

R
A

sm

Q
A
sm

sum

A

(c) FOI pattern in ARC

Figure 5: The semantics of a simple grouped aggregate query in a
“from the outside in” pattern represented in SQL with a scalar sub-
query (a) or lateral join (b), and ARC (c), (7). This relational pattern
corresponds to the way Klug [40] (4), Hella et al. [37] (5), and Souf-
flé [2, 49] (6) express the query.

In Soufflé [2, 49], the query follows the same pattern:

Q(a,sum b: {R(a,b)}) :- R(a,_). (6)

The documentation [2] describes this pattern explicitly: “You can-
not export information from within the body of an aggregate. This
means that you cannot ground a variable from within the scope of
the aggregate body and expect this grounding to transfer to the outer
scope.”

This pattern of using two range variables over the same relation

to perform a grouped aggregate query without an explicit GROUP

BY clause can be represented in SQL either via scalar subqueries or

via lateral joins. Figure 5a and Fig. 5b show two different syntactic

variants in SQL that represent this pattern. Notice that both queries

are semantically equivalent: a single-valued scalar query can always

be written as a lateral join (see Section 2.12).

In ARC, the same pattern expressed as ALT, higraph, and com-

prehension syntax is shown in Fig. 5c and as:

{𝑄 (𝐴, 𝑠𝑚) | ∃𝑟 ∈𝑅, 𝑥 ∈ {𝑋 (𝑠𝑚) | ∃𝑟2 ∈𝑅,𝛾∅ [𝑟2.𝐴 = 𝑟 .𝐴∧ (7)

𝑋 .sm = sum(𝑟2 .𝐵)]}[𝑄.𝐴 = 𝑟 .𝐴 ∧𝑄.sm = 𝑥 .sm]}

Notice that while SQL does not use an explicit grouping clausewhen
an aggregate is computed over the entire relation, ARC indicates

the aggregate evaluation explicitly with a grouping on the empty

set: there is just one group, an aggregate is evaluated over all tuples

(similar to “group by true” in SQL), and ARC makes this explicit.

Notice that ARC introduces an explicit intermediate defined re-

lation 𝑋 that exists only implicitly in the surface syntax of several

languages. While function composition, as in (𝑔 ◦ 𝑓 ) (𝑥) = 𝑔(𝑓 (𝑥))
or the head-nested scalar subquery, hides an intermediate relation,

the lateral-join formulation in SQL already exposes it as a derived

relation. Recall that an abstract relational query language serves as

a reference language and should make implicit patterns explicit. Thus,
ARC represents these conceptual structures explicitly as defined

select R.dept , avg(S.sal) av
from R, S
where R.empl=S.empl
group by R.dept
having sum(S.sal) >100

(a) Multiple aggregates in SQL
COLLECTION
├─ HEAD: Q(dept,av)
└─ QUANTIFIER ∃

├─ BINDING: x ∈ 
│  └─ COLLECTION
│     ├─ HEAD: X(dept,av,sm)
│     └─ QUANTIFIER ∃
│        ├─ BINDING: r ∈ R
│        ├─ BINDING: s ∈ S
│        ├─ GROUPING: r.dept
│        └─ AND ∧
│           ├─ PREDICATE: r.empl= s.empl
│           ├─ PREDICATE: X.dept = r.dept
│           ├─ PREDICATE: X.av = avg(s.sal)
│           └─ PREDICATE: X.sm = sum(s.sal)
└─ AND ∧

├─ PREDICATE: Q.dept = x.dept
├─ PREDICATE: Q.av = x.av
└─ PREDICATE: x.sm > 100

(b) ARC ALT modality

R
dept
empl

X
dept
av
sm

>100

S
empl
sal

avg
sum

Q
dept
av

(c) ARC higraph modality

Figure 6: (a): Running example for multiple aggregates from [37] in
SQL (a) and ARC (b), (c), (8).

relations, which provides a clear abstraction for understanding how

queries are built in a modular way from smaller components, even

when they are never or cannot be materialized (see Section 2.13).

Also notice that we do not need to name them in the higraph modal-

ity (Fig. 5c): they exist on the Canvas as independent topological

entities and may remain unnamed.

Multiple aggregates. We illustrate our formalism using the

running example from Hella et al. [37] “returning the average
salary for each department that pays total salary at least 100” over
a schema (with slightly simplified relation names and constant)

𝑅(empl, dept), 𝑆 (empl, sal) representing employees, their depart-

ments, and their salaries. Figure 6a shows the corresponding SQL
query [3, Database 740].

In ARC, a HAVING clause is simply a selection applied after an

aggregation:

{𝑄 (dept, av) | ∃𝑥 ∈ {𝑋 (dept, av, sm) | ∃𝑟 ∈𝑅, 𝑠 ∈𝑆,𝛾𝑟 .dept (8)

[𝑋 .dept = 𝑟 .dept ∧ 𝑋 .av = avg(𝑠 .sal) ∧ 𝑋 .sm = sum(𝑠 .sal) ∧
𝑟 .empl = 𝑠 .empl]}[𝑄.dept = 𝑥 .dept ∧𝑄.av = 𝑥 .av ∧ 𝑥 .sm > 100]}

The query expressed in the language Laggr ({<}, {
∑
,AVG}) by

Hella et al. [37] defines an output relation𝑄 (𝑦, 𝑞) via the following



Database Research needs an Abstract Relational Query Language CIDR’26, January 18-21, 2026, Chaminade, USA

R
dept
empl

>100

Q
dept
av

R
dept
empl

S
empl
sal

R
dept
empl

S
empl
sal

av
X

sm
Y

avg sum

S
empl
sal

Figure 7: Pattern-preserving ARC higraph representation of the
multiple-aggregate query in the formalism by Hella et al. [37] (9).

expression:
7

𝑄 (𝑦, 𝑞) := (∃𝑥∃𝑧.𝑅(𝑥,𝑦) ∧ 𝑆 (𝑥, 𝑧)) (9)

∧ (𝑞 = Aggr
AVG

𝑥, 𝑧.(𝑅(𝑥,𝑦) ∧ 𝑆 (𝑥, 𝑧), 𝑧))
∧ (Aggr∑𝑥, 𝑧.(𝑅(𝑥,𝑦) ∧ 𝑆 (𝑥, 𝑧), 𝑧) > 𝑐100)

For a fixed 𝑦, the aggregate term AggrΣ 𝑥, 𝑧.(𝑅(𝑥,𝑦) ∧ 𝑆 (𝑥, 𝑧), 𝑧)
ranges over all distinct rows (𝑥, 𝑧) such that 𝑅(𝑥,𝑦) ∧ 𝑆 (𝑥, 𝑧) holds.
It collects the bag {{𝑧 | ∃𝑥, 𝑧 [𝑅(𝑥,𝑦) ∧ 𝑆 (𝑥, 𝑧)]}} (with multiplici-

ties) and applies the summation operator Σ (sum) to that bag. This

formalism (inherited from Klug [40]) changes the signature of the

query: the same base relations are referenced multiple times, once

in each aggregation scope, and once outside the aggregation scopes.

This leads to a modified relational pattern, shown in the higraph

modality (Fig. 7) and in comprehension syntax modalities:

{𝑄 (dept, av) | ∃𝑟3 ∈𝑅, 𝑠3 ∈𝑆, (10)

𝑥 ∈ {𝑋 (av) | ∃𝑟1 ∈𝑅, 𝑠1 ∈𝑆,𝛾𝑟1 .dept
[𝑟1 .dept = 𝑟3 .dept ∧ 𝑟1 .empl = 𝑠1 .empl ∧ 𝑋 .av = avg(𝑠1 .sal)]},
𝑦 ∈ {𝑌 (sm) | ∃𝑟2 ∈𝑅, 𝑠2 ∈𝑆,𝛾𝑟2 .dept
[𝑟2 .dept = 𝑟3 .dept ∧ 𝑟2 .empl = 𝑠2 .empl ∧ 𝑌 .sm = sum(𝑠2 .sal)]}
[𝑄.dept = 𝑟3 .dept ∧𝑄.av = 𝑥 .av ∧ 𝑟3 .empl = 𝑠3 .empl ∧ 𝑦.sm > 100]}

While Rel [1, 8] follows the FOI pattern for aggregation, it still in-

herits the pattern of using distinct aggregation scopes (i.e. separate

subqueries) for each aggregate over the same relation:

def Q(d,av) : (11)

av = average[(e,s) : R(e,d) and S(e,s)] and
sum[(e,s) : R(e,d) and S(e,s)] > 100

Figure 8 shows this relational pattern in ARC’s higraph modality,

and the corresponding comprehension syntax is:

{𝑄 (dept, av) | (12)

𝑥 ∈ {𝑋 (dept, av) | ∃𝑟1 ∈𝑅, 𝑠1 ∈𝑆,𝛾𝑟1 .dept
[𝑋 .dept = 𝑟1 .dept ∧ 𝑟1 .empl = 𝑠1 .empl ∧ 𝑋 .av = avg(𝑠1 .sal)]},
𝑦 ∈ {𝑌 (dept, sm) | ∃𝑟2 ∈𝑅, 𝑠2 ∈𝑆,𝛾𝑟2 .dept
[𝑌 .dept = 𝑟2 .dept ∧ 𝑟2 .empl = 𝑠2 .empl ∧ 𝑌 .sm = sum(𝑠2 .sal)]}
[𝑄.dept = 𝑥 .dept ∧𝑄.av = 𝑥 .av ∧ 𝑥 .dept = 𝑦.dept ∧ 𝑦.sm > 100]}

Notice the similarities and differences between the relational pat-

terns of Fig. 8/(12) and Fig. 7/(10).

7
We made an adjustment to the query after confirming with the authors that

our interpretation was correct. The aggregation as originally written in [37],

Aggr
∑𝑧.(∃𝑦.𝑅 (𝑥, 𝑦) ∧ 𝑆 (𝑥, 𝑧 ), 𝑧 ) would, on a database containing two employ-

ees with the same salary in the same department, count that salary only once rather

than twice. Also, “𝑐100” is a language-specific syntax for referring to the constant 100.

>100

Q
dept
av

R
dept
empl

S
empl
sal

X
dept
av

R

sal

empl

R
empl
dept

Y

sm

dept

sum

avg

Figure 8: Pattern-preserving ARC higraph representation of the
multiple-aggregate query written in Rel (11).

Logical sentences and integrity constraints. Expressions that
evaluate to true or false can also contain aggregates. Furthermore,

aggregation predicates may be comparison predicates, not assign-

ment predicates. Figures 9b and 9d show two ARC sentences that

illustrate this pattern (see [28] on how to read the negation scope):

∃𝑟 ∈𝑅 [∃𝑠 ∈𝑆,𝛾∅ [𝑟 .𝑖𝑑 = 𝑠 .𝑖𝑑 ∧ 𝑟 .𝑞 ≤ count(𝑠 .𝑑)]] (13)

¬∃𝑟 ∈𝑅 [∃𝑠 ∈𝑆,𝛾∅ [𝑟 .𝑖𝑑 = 𝑠 .𝑖𝑑 ∧ 𝑟 .𝑞 > count(𝑠 .𝑑)]] (14)

By contrast, the closest SQL formulations, shown in Figures 9a

and 9c, can only return a unary relation representing the truth

value, not a Boolean sentence directly [3, Database 737].

select exists(
select 1
from R
where R.q <=

(select count(S.d)
from S
where S.id=R.id))

(a)

S
id
dcount

R
id
q ≤

(b)

select not exists(
select 1
from R
where R.q >

(select count(S.d)
from S
where S.id=R.id))

(c)

S
id
dcount

R
id
q >

(d)

Figure 9: Boolean queries and constraints (13), (14).

2.6 Language Conventions
Consider an instance with 𝑅 = {(1, 2)} and 𝑆 = ∅. The following
Soufflé rule computes, for each 𝑅(𝑎𝑘, _), the sum of all 𝑏 such that

𝑆 (𝑎,𝑏) and 𝑎 < 𝑎𝑘 :

Q(ak,sm) :- R(ak,_), sm = sum b: {S(a,b), a<ak}. (15)

On this instance, the rule derives 𝑄 (1, 0) because Soufflé evaluates

a sum over an empty set as 0 (Soufflé has no NULL). In contrast, the

equivalent SQL queries in Figs. 13a and 13b (if we add DISTINCT

to the select clause) return the row (1, NULL) on the same instance,

since in SQL the result of SUM over zero input rows is NULL.
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We treat such choices (how aggregates behave on empty inputs,

and more generally how missing values are represented) as con-
ventions. They are orthogonal to the relational structure of the

query (see Fig. 13d): changing the convention affects the observ-

able result, but not the underlying relational pattern. Accordingly,

ARC abstracts from these conventions and focuses on the relational

composition of queries.

2.7 Sets or bags? Not an issue for ARC but a
matter of convention

Nothing needs to change in the surface syntax of ARC if relations

are interpreted as bags (multisets) rather than sets. The conceptual

evaluation still ranges over tuples as before: each tuple in one rela-

tion can be paired with each tuple in the other relation, regardless

of whether a tuple has a duplicate or not. Consequently, a rela-

tional QL does not need to be designed for sets or bags; instead the

same query can be interpreted under either set or bag semantics.

Choosing set or bag interpretation is orthogonal to language design.

A common convention in the collection-types literature is to

signal bag semantics by writing bag brackets (here: {{·}}) instead
of set brackets {·}, e.g., {{𝑄 (𝐴) | 𝑟 ∈ 𝑅 [𝑄.𝐴 = 𝑟 .𝐴]}} instead of

{𝑄 (𝐴) | 𝑟 ∈𝑅 [𝑄.𝐴 = 𝑟 .𝐴]}. However, we treat this as a convention
rather than part of the concrete syntax of query strings. The syntax

of ARC does not commit to sets or bags, and the choice of semantics

is fixed independently of the relational patterns expressed by the

query.

Whether a query is interpreted under set or bag semantics mat-

ters for evaluation and optimization, because some rewrite rules

only apply under set semantics. For example, consider the nested

query

{𝑄 (𝐴) | ∃𝑟 ∈𝑅 [∃𝑠 ∈𝑆 [𝑄.𝐴 = 𝑟 .𝐴 ∧ 𝑟 .𝐵 = 𝑠 .𝐵]]}
Under set semantics this can be unnested to

{𝑄 (𝐴) | ∃𝑟 ∈𝑅, 𝑠 ∈𝑆 [𝑄.𝐴 = 𝑟 .𝐴 ∧ 𝑟 .𝐵 = 𝑠 .𝐵]}
Under bag semantics, however, the two can differ: the nested for-

mulation produces 𝑄 (𝐴) once per matching occurrence of 𝑟 (a

semijoin-like behavior), whereas the unnested formulation pro-

duces 𝑄 (𝐴) once per matching pair (𝑟, 𝑠), which multiplies output

multiplicities when multiple tuples of 𝑆 share the same 𝐵-value.

Deduplication. Removing duplicates (as in DISTINCT) is ex-

pressible via grouping on all projected attributes and does not

require a dedicated operator. For example, deduplicating a binary

relation 𝑅(𝐴, 𝐵) can be written as:

{𝑄 (𝐴, 𝐵) | ∃𝑟 ∈𝑅, 𝛾𝑟 .𝐴,𝑟 .𝐵 [𝑄.𝐴 = 𝑟 .𝐴 ∧𝑄.𝐵 = 𝑟 .𝐵 ]}.
Recall that an aggregate predicate entails a grouping clause, but

grouping can also appear without having an aggregate predicate.

2.8 Negation, Disjunction, and Union
Union of relations is treated as disjunction in TRC and ARC. Nega-
tion and disjunction are discussed in detail in [28].

2.9 Recursion
ARC supports recursion with the same least-fixed-point semantics

as Datalog, but expressed in our named perspective. Let 𝑃 (𝑠, 𝑡) be
the parent relation, where 𝑠 is the source (parent) and 𝑡 is the target

COLLECTION
├─ HEAD: A(s,t)
└─ OR ∨

├─ QUANTIFIER ∃
│  ├─ BINDING: p ∈ P
│  └─ AND ∧
│     ├─ PREDICATE: A.s = p.s
│     └─ PREDICATE: A.t = p.t
└─ QUANTIFIER ∃

├─ BINDING: p ∈ P
├─ BINDING: a2 ∈ A
└─ AND ∧

├─ PREDICATE: A.s = p.s
├─ PREDICATE: p.t = a2.s
└─ PREDICATE: A.t = a2.t

(a)

P

S
T

A
S
T

P
S
T

A

S
T

(b)

Figure 10: ARC representations for recursive query (16).

(child). In Datalog, the ancestor relation 𝐴(𝑠, 𝑡) is defined by the

familiar two-rule program:

A(x,y) :- P(x,y)
A(x,y) :- P(x,z), A(z,y)

In Datalog, multiple rules with the same head are combined by

union, and recursion is obtained by taking the least fixed point

of that union. In ARC, a relation is defined by a single construct

and the implicit union of multiple rules is written as a disjunction

within one definition.

{𝐴(𝑠, 𝑡) | ∃𝑝 ∈𝑃 [𝐴.𝑠 = 𝑝.𝑠 ∧𝐴.𝑡 = 𝑝.𝑡] ∨ (16)

∃𝑝 ∈𝑃, 𝑎2 ∈𝐴[𝐴.𝑠 = 𝑝.𝑠 ∧ 𝑝.𝑡 = 𝑎2 .𝑠 ∧ 𝑎2 .𝑡 = 𝐴.𝑡]}

2.10 Null values and (NOT) IN predicates
SQL evaluates predicates in three-valued logic, so comparisons in-

volving null may yield unknown. This interacts poorly with certain

predicates, notably NOT IN. For example, the SQL query in Fig. 11a

returns the empty set whenever 𝑆 contains any row with null in

column 𝐴, because the membership test becomes unknown and the

WHERE clause filters out the row.

But this behavior can be reproduced within two-valued logic

by rewriting NOT IN into NOT EXISTS while making null checks

explicit [43] as in Fig. 11. We can thus replicate SQL’s NULL behavior
in our collection framework as well:

{𝑄 (𝐴) | ∃𝑟 ∈𝑅 [𝑄.𝐴 = 𝑟 .𝐴∧ (17)

¬(∃𝑠 ∈𝑆 [𝑠 .𝐴 = 𝑟 .𝐴 ∨ 𝑠 .𝐴 is null ∨ 𝑟 .𝐴 is null])]}

select R.A
from R
where R.A not in

(select S.A
from S)

(a) SQL: NOT IN

select R.A from R
where not exists

(select 1
from S
where S.A=R.A
or S.A is null
or R.A is null)

(b) SQL: NOT IN with NOT EXISTS

Figure 11: Replicating SQL’s null behavior for the NOT IN clause (a)
with NOT EXISTS (b). (17) shows their ARC representation.
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select R.m, S.n
from R
left outer join S
on (R.h=11 and R.y=S.y)

(a) Complicated outer join
condition expressed in SQL

=11

Q
m
n S

y
n
q

R

m
y

h

(b)

Figure 12: Outer joins and their higraph representation.

2.11 Left and full outer joins
A priori, outer joins are not naturally expressible with plain com-

prehensions: comprehensions range over existing collections, so a

binding with no match simply disappears. For example, a left join

between 𝑅 and 𝑆 can be written as the union of the matching and

the non-matching cases:

{𝑄 (𝐴, 𝐵) | ∃𝑟 ∈𝑅, 𝑠 ∈𝑆 [𝑄.𝐴=𝑟 .𝐴 ∧𝑄.𝐵=𝑠 .𝐵 ∧ 𝑟 .𝐴=𝑠 .𝐵]} ∪
{𝑄 (𝐴, 𝐵) | ∃𝑟 ∈𝑅 [𝑄.𝐴=𝑟 .𝐴 ∧𝑄.𝐵=null ∧ ¬(∃𝑠 ∈𝑆 [𝑟 .𝐴=𝑠 .𝐵])]}

We therefore extend comprehensions with an explicit join anno-

tation in the binding list (similar in spirit to the grouping operator).

A join annotation specifies (𝑖) which bound tables are combined

by inner/left/full joins and (𝑖𝑖) the precedence (nesting) of these

joins. With this extension, the left join above can be expressed as

the single comprehension

{𝑄 (𝐴, 𝐵) | ∃𝑟 ∈𝑅, 𝑠 ∈𝑆, left(𝑟, 𝑠)
[𝑄.𝐴=𝑟 .𝐴 ∧𝑄.𝐵=𝑠 .𝐵 ∧ 𝑟 .𝐴=𝑠 .𝐵]}

The annotation inner is 𝑘-ary, while left and full are binary. Any

scope without an explicit outer-join annotation is inner by default.

For example, ∃𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 [. . .] is shorthand for ∃𝑟 ∈ 𝑅, 𝑠 ∈
𝑆, 𝑡 ∈𝑇, inner(𝑟, 𝑠, 𝑡) [. . .], and an inner join followed by a left join

can be written as ∃𝑟 ∈𝑅, 𝑠 ∈𝑆, 𝑡 ∈𝑇, left(𝑟, inner(𝑠, 𝑡)) [. . .]. Our join
annotations can model arbitrary nestings of outer joins, including

cases that are awkward to express in surface SQL syntax [12, 16].

At the higraph level, we depict outer join conditions by marking

the optional side with an empty circle (inspired by ERD notation).

Precedence scopes mirror the nesting of join annotations and can

also cover cross joins. For example, Fig. 12a (from [12, example N’])

corresponds to:

{𝑄 (𝑚,𝑛) | ∃𝑟 ∈𝑅, 𝑠 ∈𝑆, left(𝑟, inner(11, 𝑠)) (18)

[𝑄.𝑚 = 𝑟 .𝑚 ∧𝑄.𝑛 = 𝑠 .𝑛 ∧ 𝑟 .𝑦 = 𝑠 .𝑦 ∧ 𝑟 .ℎ = 11]}

Here a literal 𝑐 used as a leaf inside a join annotation denotes a

singleton relation (a virtual unary table) containing just the value

𝑐; hence inner(11, 𝑠) is a cross join between 𝑆 and this singleton.

Because outer cross joins contribute no join-condition edge in the

higraph, we annotate them textually (e.g., with “×”) when needed.

2.12 Representing head aggregates
Recall from Section 2.3 thatARC does not allow nesting (subqueries)

in the head, and from Section 2.5 that ARC represents head aggre-

gates as a form of lateral join in the body. We call a head aggregate

select R.A,
(select sum(S.B) sm
from S
where S.A<R.A)

from R

(a) Scalar query

select R.A, X.sm
from R join lateral

(select sum(S.B) sm
from S
where S.A<R.A) X

on true

(b) Lateral query

select R.A, sum(S.B) sm
from R
left join S
on S.A<R.A
group by R.A

(c) Left join (incorrect translation;
shown as counterexample)

X
S

B

R
A

sm

Q
A
sm

sum

A

>

COLLECTION
├─ HEAD: Q(A,sm)
└─ QUANTIFIER ∃

├─ BINDING: r ∈ R
├─ BINDING: x ∈ 
│  └─ COLLECTION
│     ├─ HEAD: X(sm)
│     └─ QUANTIFIER ∃
│        ├─ BINDING: s ∈ S
│        ├─ GROUPING: ∅
│        └─ AND ∧
│           ├─ PREDICATE: s.A < r.A
│           └─ PREDICATE: X.sm = sum(s.B)
└─ AND ∧

├─ PREDICATE: Q.A = r.A
└─ PREDICATE: Q.sm = x.sm

(d) Relational Pattern of a single-valued head-nested query

Figure 13: (a) A single-valued correlated scalar SQL query with an
aggregate in the head. (b) An equivalent formulation that pushes the
aggregate into the body using a lateral join. (c) An alternative formu-
lation using a left outer join and GROUP BY. Only the lateral-join
formulation (b) is guaranteed to preserve the semantics under both
set and bag semantics (in particular, when 𝑅 contains duplicates). (d):
ARC does not allow nesting in the head and therefore represents
such scalar queries directly in the lateral-join form (b).

in any relational language single-valued if, for every result tuple of

the query body, the aggregate evaluates to a single scalar value (or

null). This class includes SQL scalar subqueries such as Fig. 5a, as

well as Soufflé head aggregates such as query (6). For those queries,

the overall result is a flat relation, i.e., it contains no nested col-

lections. Any single-valued head aggregate can be rewritten as a

lateral join in the body.
8
The intuition is that a lateral join faithfully

preserves the intended per-tuple semantics of a correlated scalar

subquery: the inner query is re-evaluated once per outer tuple, with-

out accidental grouping or merging. In contrast, a rewrite based on

LEFT JOIN + GROUP BY [21, 23] fails to preserve the correlation

pattern under bag semantics when grouping coalesces duplicates

in the outer relation into a single output row.

For example, consider the single-valued SQL scalar subquery

in Fig. 13a and two rewrites: as lateral join in Fig. 13b and as left

join in Fig. 13c [3, Database 720]. Both rewrites are correct if the

inputs contain no duplicates. Under bag semantics, however, if

relation 𝑅 contains duplicate values (and rows don’t have a unique

key), then the query in Fig. 13c collapses all identical 𝑅.𝐴 values

into a single group and no longer reflects the “once per tuple of 𝑅”

evaluation of the subquery.
9
In contrast, the lateral join in Fig. 13b

remains equivalent even under bag semantics, because the lateral

8
This has already been observed in [17, Sect. 10] for set semantics.

9
If each outer tuple had a unique identifier, then we could add it to the GROUP BY

clause and preserve the semantics.
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intensional
relations

external
relations

abstract
relations

base 
relations

defined relations

EDB & IDB & built-ins in Datalog

defined in a relational language

Figure 14: Base relations are given extensionally by enumeration.
Defined relations are given intensionally by definitions. Intensional
relations (views, CTEs, IDBs) are defined by relational queries and
may bematerialized. External relations (built-ins) are defined outside
the relational language and may have infinite extension. Abstract
relations are possibly domain-dependent relational expressions that
help abstract and modularize large queries.

join preserves the per-outer-tuple semantics. In other words, a

single-valued scalar subquery and its lateral-join encoding use

the same conceptual evaluation strategy. For that reason, ARC
represents scalar queries as lateral joins (Fig. 13d).

2.13 Defined relations (incl. abstract relations)
In principle, relational query languages can treat functions and

arithmetic predicates uniformly as relations. Unlike base relations
(base tables), defined relations are not specified extensionally by

enumerating their tuples, but intensionally via a definition. Among

defined relations, intensional relations (e.g., views and CTEs = Com-

mon Table Expressions) are definable in the relational language and,

over a finite database instance, have a finite extension (and thus

can be materialized). In Datalog terminology, base and intensional

relations correspond to extensional and intensional predicates (EDB

and IDB), respectively (Fig. 14).

2.13.1 External relations. In contrast to intensional relations, ex-

ternal relations (often referred to as external predicates) are defined

outside the relational language and may have infinite extension.

Intuitively, they correspond to built-in predicates (or built-ins) in

Datalog, i.e. predefined relations that extend pure logical atoms

with computational or domain-specific functionality, e.g. the arith-

metic predicate “+”, equality “=”, comparisons such as “>”, or string

comparison such as SQL’s “LIKE” operator.10

Example 1 (arithmetic and comparison operators). A rela-
tional interpretation of the arithmetic operator “Minus” (for “−” as
in 5 − 3 = 2) is given by:

{Minus(left, right, out) | Minus.out =Minus.left −Minus.right}
Thus, in the following query with an arithmetic minus operator

{𝑄 (𝐴) | ∃𝑟 ∈𝑅, 𝑠 ∈𝑆, 𝑡 ∈𝑇 [𝑄.𝐴 = 𝑟 .𝐴 ∧ 𝑟 .𝐵 − 𝑠 .𝐵 > 𝑡 .𝐵]} (19)

we can relationalize the minus operator (i.e., reify it as a relation)
and rewrite the query. This yields a join query:

{𝑄 (𝐴) | ∃𝑟 ∈𝑅, 𝑠 ∈𝑆, 𝑡 ∈𝑇, 𝑓 ∈Minus[𝑄.𝐴 = 𝑟 .𝐴∧ (20)

𝑓 .left = 𝑟 .𝐵 ∧ 𝑓 .right = 𝑠 .𝐵 ∧ 𝑓 .out > 𝑡 .𝐵]}

10
While the comparison operator “>” may be part of a relational vocabulary, we cannot

define a binary relation Bigger(𝐴, 𝐵) containing pairs of integers where𝐴 > 𝐵 with

relational operations alone.

select R.A
from R,S,T
where R.B-S.B>T.B

(a)

select R.A
from R,S,T,">","-"
where R.B="-". left
and S.B="-". right
and ">".left ="-".out
and ">".right=T.B

(b) named perspective

select R.A
from R,S,T
where "-"(R.B,S.B,x)
and ">"(x,T.B)

(c) positional perspective

Q
A

R

A
B

–
out
left
right

T

B

S

B

>

(d) diagram for (20)

Q
A

R
A
B

–
out
left
right

T
B

S
B

>
left
right

(e) diagram for Fig. 15b

Figure 15: In relational languages, every computable relation can be
relationalized as an external relation with externally defined seman-
tics. For example, (b)-(e) use an external relation for minus called
“−”. (b)/(c): Compare the syntax if external relations are interpreted
either under a named or unnamed (positional) perspective in SQL.

We can also relationalize the comparison operator > as a separate
relation named “Bigger”:

{Bigger(left, right) | Bigger.left > Bigger.right}
and rewrite the query as an equijoin between relations [54]:

{𝑄 (𝐴) | ∃𝑟 ∈𝑅, 𝑠 ∈𝑆, 𝑡 ∈𝑇, 𝑓 ∈Minus, 𝑔∈Bigger (21)

[𝑄.𝐴 = 𝑟 .𝐴 ∧ 𝑓 .left = 𝑟 .𝐵 ∧ 𝑓 .right = 𝑠 .𝐵 ∧
𝑓 .out = 𝑔.left ∧ 𝑔.right = 𝑡 .𝐵]}

Queries (19) and (21) correspond to the SQL queries from Fig. 15a
and Fig. 15b, respectively. Figures 15d and 15e show the queries
from (20) and (21), respectively (with minus shown as “−”, etc.).

Discussion. 1 In Example 1, the relational definition of the

Minus relation uses the arithmetic operator “−”. Its meaning is

therefore not determined by pure relational operators and must be

provided by primitives outside the relational core. Such primitives

are often called “built-ins”; we use the term external relation to em-

phasize that their semantics is derived from concepts outside core

relational constructs. For example, ⟦Minus⟧ = {(𝑥,𝑦, 𝑧) | 𝑧 = 𝑥−𝑦}.
If Add is already defined as a primitive operator, then subtrac-

tion can also be characterized via addition: ⟦Minus⟧ = {(𝑥,𝑦, 𝑧) |
Add(𝑦, 𝑧, 𝑥)}. More generally, we can relationalize (reify) such op-

erations (i.e., treat them as relations) to make their use explicit

in queries. We also note that Fig. 15c illustrates a mixing of the

named perspective (SQL) with an unnamed perspective where the

operands of predicates are accessed positionally; such mixing can

break compositionality (here, the join attribute 𝑥 is not defined).

The formalities of such external specifications are not our focus; we

instead focus on modular building blocks of relational languages,

of which external relations are one.

2 The comprehension-style definition of Minus in Example 1

also raises the usual safety issue: none of its “attributes” are range-

restricted, so the relation is unsafe and ill-defined. We can restore

safety by guarding the operands and result with a domain relation



Database Research needs an Abstract Relational Query Language CIDR’26, January 18-21, 2026, Chaminade, USA

Likes
drinker

Likes
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer
drinker

<>
select
drinker

Subset

Subset

(a)

rightLikes
drinker
beer

Likes
drinker
beer

Subset

left

(b)

Likes
drinker
beer

Likes
drinker
beerSubset

left
right

(c)

Likes
drinker

Likes
drinker

Subset
left
right

Subset
left
right

<>
select
drinker

(d)

Figure 16: By using abstract relations, the unique-set query Fig. 17 can be modularized and now more easily interpreted as finding drinkers s.t.
there is no other drinker who likes both a subset and a superset of the beers. Notice that the newly defined relation “Subset” does not have a
well-defined extension outside the context in which it is used, and that is OK.

𝐷 (𝑣):

{Minus(left, right, out) | ∃𝑑1 ∈𝐷,𝑑2 ∈𝐷,𝑑3 ∈𝐷 [Minus.left = 𝑑1 .𝑣∧
Minus.right = 𝑑2 .𝑣 ∧Minus.out = 𝑑3 .𝑣 ∧ 𝑑3 .𝑣 = 𝑑1 .𝑣 − 𝑑2 .𝑣]}

For our purpose, we abstract from such concrete definitions: we

assume that external relations can be defined meaningfully and

are then accessible to the language. Their concrete realizations are

language-specific and not our focus. Under this abstraction, any

computation (including arithmetic operators) can be seen as a rela-

tion, and an abstract relational query language treats computation

uniformly as relations.

3 Closely related recent work [35] formalizes external predi-

cates (which evaluate to either true or false when all operands are

fixed) as possibly infinite relations whose extensions are not stored

in the database, but are accessed through specific access patterns.11

Intuitively, a predicate’s truth value is a function of its inputs (e.g.,

Add(2, 3, 5) is true). Access patterns turn such Boolean predicates

into a family of (multi-valued) functions that a query engine can

call when only a subset of the inputs are fixed (e.g., Add(2, 𝑥, 5)
represents 5 − 2 and returns 𝑥 = 3), while still fulfilling safety

requirements. This lets operands of external predicates be joined

(e.g., the join “-”.out = “>”.left between two external predicates

in Fig. 15e prevents them from being evaluated as independent

Boolean predicates) and also enables such predicates to produce

outputs when connected via assignment predicates (see e.g., Sec-

tion 3.1 and Fig. 20). In other words, richer safety conditions allow

these predicates to be treated like ordinary database relations dur-

ing query evaluation.

4 Other recent work [28] relationalizes join and selection pred-

icates into “anchor relations” in order to support arbitrarily nested

disjunctions in a diagrammatic presentation (higraph modality).

11
Notice a slightly different motivation for the word “external predicate”: For [35],

external predicates are “computed on demand rather than stored”, they are external to
the database, and only usable through a controlled interface (access patterns). We use

the word external to focus on the fact that their formal definition needs to bring in

concepts that are external to the relational model and cannot be described by standard

relational operators. Both interpretations agree that operations can be relationalized

(reified, i.e. turned into relations) for the purpose of analyzing and describing queries.

2.13.2 Abstract Relations. Abstract relations are relation symbols

defined within a relational language to name and abstract a sub-

query. In contrast to external relations, abstract relations need not

denote a standalone, well-defined extension on their own. In par-

ticular, an abstract relation may be domain-dependent and thus

may not have a well-defined extension on its own. Nevertheless,

when an abstract relation occurs inside a safe surrounding query, it

can be interpreted as denoting some reasonable finite relation that

makes the overall query well-defined. This is exactly the point of

abstraction: when analyzing the intent of the larger query, we do

not need to reason about the internal details of the module or its

standalone extension.

Example 2 (uniqe-set qery). We are given a single relation
Likes(drinker, beer), which we abbreviate by 𝐿(𝑑, 𝑏), and wish to
find drinkers who like a unique set of beers, i.e., no other drinker
likes the exact same set of beers (see [41, Fig. 1], [31, Fig. 9] for
extensive discussion of this query). (22) In the relationally complete
fragment (the first-order fragment), the query is written as Fig. 17
in SQL and as follows in TRC and thus also in ARC:

{𝑄 (𝑑) | ∃𝑙1 ∈𝐿[𝑄.𝑑 = 𝑙1 .𝑑∧ (22)

¬(∃𝑙2 ∈𝐿[𝑙2 .𝑑 <> 𝑙1 .𝑑∧
¬(∃𝑙3 ∈𝐿[𝑙3 .𝑑 = 𝑙2 .𝑑∧

¬(∃𝑙4 ∈𝐿[𝑙4 .𝑏 = 𝑙3 .𝑏 ∧ 𝑙4 .𝑑 = 𝑙1 .𝑑])])∧
¬(∃𝑙5 ∈𝐿[𝑙5 .𝑑 = 𝑙1 .𝑑∧

¬(∃𝑙6 ∈𝐿[𝑙6 .𝑑 = 𝑙2 .𝑑 ∧ 𝑙6 .𝑏 = 𝑙5 .𝑏])])])]}
To modularize the query, we define an abstract relation Subset
(denoted 𝑆 in ARC):

{𝑆 (left, right) | (23)

¬(∃𝑙3 ∈𝐿[𝑙3 .𝑑 = 𝑆.left∧
¬(∃𝑙4 ∈𝐿[𝑙4 .𝑏 = 𝑙3 .𝑏 ∧ 𝑙4 .𝑑 = 𝑆.right])])}

Taken in isolation, that definition is not safe and therefore does
not define a view with a well-defined extension. But in the context
of the enclosing query, the module represents exactly the intended
subset relation between drinkers and allows us to modularize and
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select distinct L1.drinker
from Likes L1
where not exists

(select 1
from Likes L2
where L1.drinker <> L2.drinker
and not exists

(select 1
from Likes L3
where L3.drinker = L2.drinker
and not exists

(select 1
from Likes L4
where L4.drinker = L1.drinker
and L4.beer = L3.beer))

and not exists
(select 1
from Likes L5
where L5. drinker = L1.drinker
and not exists

(select 1
from Likes L6
where L6.drinker = L2.drinker
and L6.beer = L5.beer)))

Figure 17: Unique-set query (Example 2).

compartmentalize the query. Abstracting it as such we can use it
and rewrite the original query more concisely as:

{𝑄 (𝑑) | ∃𝑙1 ∈𝐿[𝑄.𝑑 = 𝑙1 .𝑑∧ (24)

¬(∃𝑙2 ∈𝐿, 𝑠1 ∈𝑆, 𝑠2 ∈𝑆 [𝑙2 .𝑑 <> 𝑙1 .𝑑∧
𝑠1 .left = 𝑙1 .𝑑 ∧ 𝑠1 .right = 𝑙2 .𝑑∧
𝑠2 .left = 𝑙2 .𝑑 ∧ 𝑠2 .right = 𝑙1 .𝑑])]}

In the diagrammatic modality, abstract relations correspond to

sub-diagrams that can be collapsed and expanded: a complex sub-

structure (including its internal scopes) can be replaced by a clearly

distinguished module node labeled with the abstract relation name,

and later expanded again. This supports complexity management

for large queries via modularization, hierarchy, and “zooming” (see

also [45, Sect. 4.4]).

3 TWO EXAMPLES

3.1 Matrix multiplication
We now illustrate the matrix-multiplication example from the Rel

paper [8] Rel expresses matrix multiplication between matrices

𝐴 and 𝐵 in sparse relational form and domain-based positional

notation as follows:

def MatrixMult[i,j] : (25)

sum[[k] : A[i,k]*B[k,j]]

If we allow arithmetic operations in ARC and assume all matrices

use the same schema (row, col, val), the same computation can be

written in the named perspective as:

{𝐶 (row, col, val) | ∃𝑎 ∈𝐴,𝑏 ∈𝐵,𝛾𝑎.row,𝑏.col
[𝐶.row = 𝑎.row ∧𝐶.col = 𝑏.col ∧ 𝑎.col = 𝑏.row∧
𝐶.𝑣𝑎𝑙 = sum(𝑎.val ∗ 𝑏.val)]}

select distinct D1.drinker as left ,
D2.drinker as right

into Subset
from Likes D1, Likes D2
where not exists

(select 1
from Likes L3
where not exists

(select 1
from Likes L4
where L4.beer = L3.beer
and D2.drinker = L4.drinker)

and D1.drinker = L3.drinker)

(a)

Subset
left
right

Likes
drinker

Likes
drinker

Likes
drinker
beer

Likes
drinker
beer

(b)

Figure 18: Safely defined Subset relation for (Example 2).

select distinct L1.drinker
from Likes L1
where not exists

(select 1
from Likes L2,Subset S1,Subset S2
where L1.drinker <> L2.drinker
and S1.left=L1.drinker
and S1.right=L2.drinker
and S2.left=L2.drinker
and S2.right=L1.drinker)

Figure 19: Query from (Example 2) rewritten to use the view from
Fig. 18.

SUM

A
row
col
val

B
row
val
col

C
row
val
col

*
out

$1

$2

Figure 20: Matrix multiplication (25)/(26) in the higraph modality.

In the higraph modality Fig. 20, multiplication is modeled via an

external relation "*"($1, $2, out):

{𝐶 (row, col, val) | ∃𝑎 ∈𝐴,𝑏 ∈𝐵, 𝑓 ∈ "∗", 𝛾𝑎.row,𝑏.col (26)

[𝐶.row = 𝑎.row ∧𝐶.col = 𝑏.col ∧ 𝑎.col = 𝑏.row∧
𝐶.𝑣𝑎𝑙 = sum(𝑓 .out) ∧ 𝑓 .$1 = 𝑎.val ∧ 𝑓 .$2 = 𝑏.val]}

3.2 An illustration of the count bug
The count bug [24] is a famous example of an attempted refor-

mulation of a nested correlated query like the one in Fig. 21a and

replacing it with Fig. 21b (the incorrect translation was given in
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select R.id
from R
where R.q =

(select count(S.d)
from S
where S.id = R.id)

(a) Count bug: version 1

select R.id
from R,

(select S.id, count(S.d) as ct
from S
group by S.id) as X

where R.q = X.ct and R.id = X.id

(b) Count bug: version 2

select R.id
from R,

(select R2.id, count(S.d) as ct
from R R2 left join S
on R2.id = S.id
group by R2.id) as X

where R.q = X.ct and R.id = X.id

(c) Count bug: version 3

Q
id

S
id
dcount

R
id
q

(d) Count bug: version 1

Q
id

S
id
dcount

R
id
q

X

ct
id

(e) Count bug: version 2

Q
id

S
id
dcount

R
id
q

X

ct
id

R
id

(f) Count bug: version 3

COLLECTION
├─ HEAD: Q(id)
└─ QUANTIFIER ∃

├─ BINDING: r ∈ R
└─ AND ∧

├─ PREDICATE: Q.id = r.id
└─ QUANTIFIER ∃

├─ BINDING: s ∈ S
├─ GROUPING: ∅
└─ AND ∧

├─ PREDICATE: r.id = s.id
└─ PREDICATE: r.q = count(s.d)
(g) ALT version 1

COLLECTION
├─ HEAD: Q(id)
└─ QUANTIFIER ∃
   ├─ BINDING: r ∈ R
   ├─ BINDING: x ∈ 
   │  └─ COLLECTION
   │     ├─ HEAD: X(id, ct)
   │     └─ QUANTIFIER ∃
   │        ├─ BINDING: s ∈ S
   │        ├─ GROUPING: s.id
   │        └─ AND ∧
   │           ├─ PREDICATE: X.id = s.id
   │           └─ PREDICATE: X.ct = count(s.d)
   └─ AND ∧
      ├─ PREDICATE: Q.id = r.id
      ├─ PREDICATE: r.id = x.id
      └─ PREDICATE: r.q = x.ct

(h) ALT version 2

COLLECTION
├─ HEAD: Q(id)
└─ QUANTIFIER ∃

├─ BINDING: r ∈ R
├─ BINDING: x ∈ 
│  └─ COLLECTION
│     ├─ HEAD: X(id, ct)
│     └─ QUANTIFIER ∃
│        ├─ BINDING: r2 ∈ R
│        ├─ BINDING: s ∈ S
│        ├─ GROUPING: r2.id
│        ├─ JOIN: left(r2, s)
│        └─ AND ∧
│           ├─ PREDICATE: X.id = r2.id
│           ├─ PREDICATE: X.ct = count(s.d)
│           └─ PREDICATE: r2.id = s.id
└─ AND ∧

├─ PREDICATE: Q.id = r.id
├─ PREDICATE: r.id = x.id
└─ PREDICATE: r.q = x.ct

(i) ALT version 3

Figure 21: Section 3.2: Illustrations of the count bug: Left/middle/right columns correspond to queries (27)/(28)/(29), respectively.

[39], and corrected in [24]) However, on an input database with

𝑅(9, 0) and empty table 𝑆 , the first query would return 9, whereas

the second would return an empty result. The correct decorrelation

happens with left join and the query shown in Fig. 21c.
12
The re-

maining equations and figures in this section show those queries in

a pattern-equivalent ARC representations and various modalities.

{𝑄 (id) | ∃𝑟 ∈𝑅 [𝑄.id = 𝑟 .id ∧ ∃𝑠 ∈𝑆,𝛾∅ (27)

[𝑟 .id = 𝑠 .id ∧ 𝑟 .𝑞 = count(𝑠 .𝑑)]]}
{𝑄 (id) | ∃𝑟 ∈𝑅, 𝑥 ∈ {𝑋 (id, ct) | (28)

∃𝑠 ∈𝑆,𝛾𝑠.𝑖𝑑 [𝑋 .id = 𝑠 .id ∧ 𝑋 .ct = count(𝑠 .𝑑)]}
[𝑄.id = 𝑟 .id ∧ 𝑟 .id = 𝑥 .id ∧ 𝑟 .𝑞 = 𝑥 .ct]}

{𝑄 (id) | ∃𝑟 ∈𝑅, 𝑥 ∈ {𝑋 (id, ct) | ∃𝑠 ∈𝑆, 𝑟2 ∈𝑅,𝛾𝑟2 .𝑖𝑑 , left(𝑟2, 𝑠) (29)

[𝑋 .id = 𝑟2 .id ∧ 𝑋 .ct = count(𝑠 .𝑑) ∧ 𝑟2 .id = 𝑠 .id]}
[𝑄.id = 𝑟 .id ∧ 𝑟 .id = 𝑥 .id ∧ 𝑟 .𝑞 = 𝑥 .ct]}

4 QUESTIONS & ANSWERS
The flat relational model is obsolete. We need to think bigger
and move to an Entity-Relational Data model ERDs [18], relational
maps [19], databases as output [47], or at least a nested relational
model [10]. While we see merit in these directions, our goal is more

modest. Rather than replace or extend the relational model, our

12
The example assumes R.id is a key. Otherwise, the correct translation requires an

additional deduplication.

goal is to complement current practices. SQL remains widely used,

and when inputs and outputs are in 1NF, nesting of intermediate

results adds no expressive power [42]. That said, nested relations

are now part of standards [10] and the development of an abstract

nested relational QL remains open.

SQL is bad for users. We need to create a new language, like
SaneQL [46], Rel [8], or a pipe/dataflow syntax [52]. That may or

may not be true, but our goal is orthogonal: rather than propose

yet another QL or extension to SQL, we suggest that the database

community instead creates a relational reference language (a rela-
tional meta language) that abstracts the relational patterns across
query languages (the relational core) away from a surface syntax.

Usability is not an immutable property of a language, it also

depends on the modality in which it is presented. Therefore, ARC
provides multiple modalities, including a machine-oriented data

structure called Abstract Language Tree (ALT). Because ALT ex-

poses bindings, scopes, and grouping structure directly, it supports

systematic traversal, rewriting, and validation, and can serve as

an intermediate representation for NL2SQL systems that translate

natural language into query intent and then render to SQL. Ulti-
mately, questions about relative usability need to be solved with

reproducible, task-oriented user studies [29, 55].

Is this then another Intermediate Representation? Our goal is
fundamentally different from intermediate representations (IRs) like

Semiring Dictionaries [50], Substrait [5], and relational maps [19],
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which are typically closely tied to execution models, and designed

to support optimization. In contrast, we aim to move in the opposite

direction, toward a more abstract representation that decouples

from both data layout and syntax, focusing instead on the semantic

structure of relational queries.

Is this about logical expressiveness with aggregates? While

the addition of aggregate functions to logic has traditionally been

studied in terms of logical expressiveness [42], our goal is different.

Our focus is to capture relational patterns across various languages.

For that purpose we designed a reference language that supports ag-

gregate queries with the same relational patterns as SQL, including

multiple aggregates evaluated within a single grouping scope.

Are you reinventing Rel? No. We fully embrace the Rel philos-

ophy [1, 8]: everything is a relation, and some relations are defined

(or derived) rather than stored. Rel aims to unify data modeling,

querying, and application logic within a single relational language,

removing the boundary between a relational query sublanguage

(e.g., SQL) and the host application language (e.g., Java) so that a

powerful execution engine can optimize globally across the entire

program. Our aim is not to design such a language or an execution

engine. Instead, our goal is to support the ongoing discussion about

both user-facing and machine-facing language design trade-offs,

the different patterns that appear between relational languages,

and the recurring relational core expressible in all of them.

To this end, we provide an expressive abstract relational query
language that comes with a pattern-preserving diagrammatic

“modality”. This language is intended as a reference language for
analyzing current and future relational languages, whether they

adopt set or bag semantics (which we regard as a “convention”

orthogonal to a language itself).

Why are we still talking about new languages if everything
will be NL2SQL anyway? ARC/ALT can be used as an interme-

diate target: models generate a structurally constrained represen-

tation, which can be validated (well-scoped variables, grouping

legality, correlation shape) and then rendered to SQL. This enables
intent-based evaluation and comparison of generated queries at the

semantic-structure level rather than at the surface-syntax level.

Do you really expect people to write queries in a complicated
looking formalism like (29)? No. Our point is not to replace

SQL, Datalog, or any other surface syntax. The point is to make

query meaning sayable. We propose a universal relational refer-
ence language, paired with a shared vocabulary, that names the

primitive operations by which queries combine relations to answer

relational questions. Once those primitives are named, we can talk

about the same underlying patterns across very different languages

(declarative, procedural, or functional) without mistaking syntax

for substance. Thus, a reference language must be explicit, and

explicitness is often verbose: what production languages compress

into syntactic sugar, convention, or “obvious” readings must be

surfaced if we want a reliable reference point for comparison. That

surfacing is not busywork; it allows us to name distinctions that

our current vocabulary blurs. It lets us point at a query in Soufflé

and say “FOI aggregation.” It lets us look at Fig. 20 and see the

relational pattern for matrix multiplication. And it lets us diagnose

bugs by naming the difference between an aggregate used as a value

(assignment predicate) and an aggregate used as a test (comparison

predicate), as in the count bug (Fig. 21).

And anyway, fewer people will write queries directly in the fu-

ture; more people will read them and try to make sense of them. In

that setting, usability is not just the language, it is about the modal-

ity in which it is presented. The same semantics can be rendered as

text, diagrams, or ALTs; different modalities serve different readers.

For humans, initial evidence suggests that a diagrammatic modality

like Fig. 21f can be read faster andmore accurately than SQL [29, 55].

For machines (including LLMs), we believe that explicit, modular

structure with small, reusable vocabulary can improve precision

and recall.

5 NEXT STEPS
We view Abstract Relational Calculus (ARC) as a candidate semantic
backbone: a relational metalanguage for connecting the surface syn-

tax of queries to their core relational intent, across query languages,

modalities, and conventions.

On the systems side, we are building a SQL↔ ARC translator

that can render ARC in all 3 modalities, extending our prototype im-

plementation [48] to cover additional aggregation-nesting patterns

and disjunctions. A spring 2026 seminar on relational language

design [6] focuses on the pattern expressiveness of relational lan-

guages and, in the process, produce further embeddings of other

languages in ARC.
On the theory side, we plan to prove coverage results: for a well-

defined fragment of SQL (including arbitrarily correlated queries

and aggregation patterns), every query has a pattern-preserving

ARC representation, and thus SQL ↔ ARC round-tripping is

semantics-preserving (with appropriate conventions).

Finally, an open question is whether ARC/ALT can indeed serve

as an effective intermediate target for NL2SQL, together with

datasets and evaluation metrics that score intent via semantic struc-

ture proxies (scopes, joins, relational patterns) rather than SQL
syntax similarity. Also open are extensions to sorted lists (ORDER

BY), as well as extensions to the nested relational model [10].
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