Database Research needs an Abstract Relational Query Language

Wolfgang Gatterbauer
Northeastern University, USA

ABSTRACT

For decades, SQL has been the default language for composing
queries, but it is increasingly used as an artifact to be read and
verified rather than authored. With Large Language Models (LLMs),
queries are increasingly machine-generated, while humans read,
validate, and debug them. This shift turns relational query lan-
guages into interfaces for back-and-forth communication about
intent, which will lead to a rethinking of relational language design,
and more broadly, relational interface design.

We argue that this rethinking needs support from an Abstract
Relational Query Language (ARQL): a semantics-first reference meta-
language that separates query intent from user-facing syntax and
makes underlying relational patterns explicit and comparable across
user-facing languages. An ARQL separates a query into (i) a rela-
tional core (the compositional structure that determines intent), (ii)
modalities (alternative representations of that core tailored to differ-
ent audiences), and (iii) conventions (orthogonal environment-level
semantic parameters under which the core is interpreted, e.g., set vs.
bag semantics, or treatment of null values). Usability for humans or
machines then depends less on choosing a particular language and
more on choosing an appropriate modality. Comparing languages
becomes a question of which relational patterns they support and
what conventions they choose.

We introduce Abstract Relational Calculus (ARC), a strict gener-
alization of Tuple Relational Calculus (TRC), as a concrete instance
of ARQL. ARC comes in three modalities: (i) a comprehension-style
textual notation, (i) an Abstract Language Tree (ALT) for machine
reasoning about meaning, and (iii) a diagrammatic hierarchical-
graph (higraph) representation for humans. ARC provides the miss-
ing vocabulary and acts as a Rosetta Stone for relational querying.

KEYWORDS
Relational Language Design, Query Understanding

1&~ This PDF contains internal hyperlinks for easier reading: click
any linked term to jump to the section where it is defined.

1 INTRODUCTION

New interfaces for humans and machines. Several recent ef-
forts question SQL as the default relational query language (QL)
and propose to either extend or completely replace it [8, 46, 52]. Ex-
amples in these debates include whether nested correlated queries
are inherently hard for users to follow and should be replaced with
more dataflow (algebraic) abstractions, and whether set or bag se-
mantics are the right choice (e.g., debated at the DBPL workshop
at SIGMOD’25 [34]). Less explored, however, is a more basic rep-
resentational question: @) How should we represent the intent of

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2026. 16th Annual Conference on
Innovative Data Systems Research (CIDR ’26). January 18-21, Chaminade, USA

Diandre Miguel Sabale
Northeastern University, USA

Abstract Relational Query Language

Relational
Diagram

| Comprehension|| Abstract

Syntax ~[Language Tree

User-level Query Language

Human Intermediate Representation

&

Machine

more
abstract

Figure 1: An Abstract Relational QL (ARQL) abstracts away from
syntactic details of a query to a higher-level representation. Just
as Intermediate Representations (IRs) enable query optimization, a
more abstract representation can support semantic understanding
of a query’s intent. Both humans and machines can benefit from
modalities tailored to their needs. Conventions (not shown) factor
out orthogonal design choices that don’t affect the relational pattern.

a query so that its relational structure is explicit and comparable
across different surface syntaxes? How can we describe how a query
composes its inputs (i.e., the base relations) to define query intent,
independent of the idiosyncrasies of any particular query language?

At the same time, relational queries are increasingly produced
by machines and validated by humans. In this setting, the user
interaction with relational databases changes: now SQL is not just
a language for users composing queries, but it also increasingly
serves as a message format between machine generation and human
validation. As noted in the Cambridge report [7], these develop-
ments “potentially change how we interface with relational databases,
shifting emphasis from query composition to query interpretation.
“The essential skill is no longer simply writing programs but learn-
ing to read, understand, critique and improve them instead” [51].
Since LLMs can hallucinate or introduce errors, “effective explana-
tion mechanisms ... become increasingly important” [7]. This raises
a second question: @) How should machine-generated queries be
presented to users so they can validate them and provide feedback?

The challenge is not limited to human-facing interfaces. Machine-
facing tasks such as semantic similarity search and retrieval also
require representations aligned with meaning rather than syntax.
SQL’s surface syntax is a poor proxy for intent: semantically equiv-
alent queries can differ substantially in syntactic structure, while
syntactically similar queries may encode different semantics. In the
NL2SQL domain, current benchmarks often rely on surface-level
criteria such as exact string match or execution match. Since those
fail to capture deeper semantic relationships, Floratou et al. [22]
argue for “a shift towards intent-based benchmarking frameworks.
This raises a third question: e What language abstraction should
an LLM (or future machine-tool) use to internally reason about query
intent and semantic similarity in a way that is faithful to relational
meaning?

Our Suggestion. We believe that database research needs new
vocabulary to analyze relational intent across languages and a

https://orcid.org/0000-0002-9614-0504
https://orcid.org/0000-0002-9614-0504
https://orcid.org/0009-0005-7689-1756
https://orcid.org/0009-0005-7689-1756

CIDR’26, January 18-21, 2026, Chaminade, USA

semantics-focused representation of relational languages that de-
couples intent from user-facing syntax while supporting multiple
modalities (i.e., mechanically inter-translatable representations of
the same language tailored to different audiences, without treating
each modality as a separate language). We call such a representation
an Abstract Relational Query Language (ARQL).

It is abstract because it factors out differences in concrete syntax
and design choices and instead focuses on a small set of composi-
tional relational primitives shared across relational query languages.
In this sense, a representation is more abstract when it makes the
relational intent of a query [14, 25] explicit without relying on
syntactic shortcuts or being forced to expose “conventions” in the
language. In general, we refer to a language-agnostic description
of how data is transformed from input to output as the relational
pattern of a query [30]. Our goal is a clean separation of concerns.
Just as Intermediate Representations (IRs), such as SDQL [50] and
Substrait [5], decouple front-end parsing from optimization and
code generation, we want to enable a syntax-agnostic discussion
of language features at a more conceptual level. This lets us treat
relational patterns as modules (Section 2.13.2) and several issues
that are not necessarily part of the relational pattern of a query
as orthogonal choices (“conventions”, see Section 2.6), such as the
convention of using set or bag semantics, the blurry distinction
between declarative and procedural languages, the treatment of
null values, typing and casting conventions, as well as different
initializations of aggregate functions (e.g., 0 or null for sum). It also
allows us to discuss the many syntactic variants that SQL permits
for expressing basically the same intent, as well as when rewrites
are not equivalent (e.g., the COUNT bug, see Section 3.2).

Another concrete use case is NL2SQL. Rather than generating
SQL text directly, an NL2SQL system can generate an ARQL rep-
resentation of intent and then render it into SQL. In this paper,
our concrete ARQL instance is Abstract Relational Calculus (ARC)
(introduced in Section 2) with a machine-facing Abstract Language
Tree (ALT) modality, which provides a natural intermediate target
for NL2SQL systems.

Modalities instead of languages. An ARQL does not have
just one representation. Instead, we propose developing alternative
modalities of the same language, each tailored to different purposes.
These modalities offer alternative views of a query, targeted for
either human interpretation or machine reasoning.

Concretely, what are usually called Abstract Syntax Trees (ASTs)
tend to remain too close to the concrete syntax of a language. For
example, SQLGlot’s AST [4, 56] places JOINs as children of SELECT
nodes, which reflects surface-level parsing (concrete syntax) rather
than abstract semantic relationships. We argue that such represen-
tations fall short as truly abstract representations of a query.

We use the term Abstract Language Tree (ALT) for a universal,
hierarchically structured representation of the semantics of a query
rather than its syntax. We originally used the term Abstract Lan-
guage Higraph (ALH) instead of ALT. The motivation is that ASTs
and ALTs are “trees” only with respect to the containment (nesting)
structure (and even that can be blurred by correlated constructs
such as LATERAL joins). Once name resolution is performed and
bindings are established (i.e., identifier occurrences are connected
to their declarations via cross-references, and the resulting struc-
ture is often called an annotated/decorated AST [13]), the overall

Gatterbauer & Sabale

COLLECTION
HEAD: Q(A)
QUANTIFIER 3

AND A
E PREDICATE: Q.A
PREDICATE: r.B £ s.B
PREDICATE: s5.C/= 0
(2) (b)

Figure 2: (a): Linked Abstract Language Tree (ALT) for TRC (1). The

overlaid arrows show the result of the linking step and are conceptual

only. (b): Diagrammatic higraph representation of the linked ALT

as a variant of Relational Diagrams.

"
A A c =]
B

— B

structure is better viewed as a hierarchical graph (a tree of contain-
ment with additional edges). This also matches the intuition that
lexical scopes correspond to nested regions (Fig. 2b). Higraphs [36]
formalize exactly this combination of nesting and linking: nodes
may be nested within nodes (capturing containment/scopes) while
edges capture references. However, they are not widely known, and
the term is unfamiliar to many readers (for a simplified and acces-
sible higraph formalism, see the online appendix of [28]). Thus, we
ultimately kept the simpler term Abstract Language Tree (ALT):
the conceptual shift from surface syntax to the underlying semantic
operations is already substantial, while the remaining intuitions
from ASTs carry over, and our higraph modality continues to make
the hierarchical graph (higraph) data structure explicit.

Similar to how query graphs support the optimization of conjunc-
tive queries [44], we believe ALTs provide a better data structure for
semantic analysis of relational queries. For an ARQL, the language-
independent ALT is ideally identical to its AST, because the syntax
reflects its semantics.

Importantly, ALTs can also be rendered diagrammatically for
human users as hierarchical graphs (higraphs). In that form, the
nested scopes of nodes in the ALT are replaced by a nesting of
nodes. Prior user studies have shown that Relational Diagrams
can help users understand relational structures faster and more
reliably [29, 41]. This emphasizes a key distinction: language design
should not be conflated with interface usability. Whether users “like”
a language is a question of modality, not of the language core itself.
Instead, modalities should be designed with target consumers in
mind, i.e. human-facing modalities for accurate semantic under-
standing and debugging, and machine-facing modalities for tasks
such as semantic similarity assessment or query transformation.
Thus, an ARQL provides the relational structure, while modalities
are lossless presentations of that structure for different consumers.

While we agree with the observation that “the idea of a single,
universal language or paradigm ... covering all data programming
needs is unlikely” [7], we argue that many of these needs can be
addressed at the level of modalities instead of languages. The goal
of an ARQL is not to unify all QLs under a single syntax, but to
enable meaningful comparisons across languages in terms of their
underlying relational patterns, and different modalities can serve
the respective needs of humans and machines. The translation
between modalities can also be automated.

Conventions instead of languages. In Green’s cognitive di-
mensions of notations [32] a “system” consists of notation (the
representational form) and an environment (the surrounding tool-
ing). Similarly, we suggest distinguishing between a language (a

Database Research needs an Abstract Relational Query Language

representation that encodes the relational composition of a query
in a particular surface syntax) and a convention (an orthogonal
design decision that can be switched and will affect the behavior
but not the relational core). For example, the aggregate sum(R.A)
initializes with null in SQL, but with 0 in Soufflé (Section 2.6). This
difference is a design decision. It is a convention that does not affect
the way a relational query composes its various components to
encode a meaning. An ARQL focuses only on the relational patterns
of a query and does not expose conventions which are specified
separately in the surrounding environment. With this change, a
sufficiently generic language design could be interpreted under
either set or bag semantics. It is just a switch that we flip on or
off. While discussion of set vs. bag semantics is still important for
query optimization, it becomes orthogonal to “language design.
Contributions. ° We suggest that the database community
develops abstract representations of relational queries that can em-
bed relational query patterns across user-facing relational query
languages. This effort can support, but is orthogonal to, the devel-
opment of concrete user-level Query Languages (QLs) and efforts
on Intermediate Representations (IRs) (Section 1). 9 We propose a
concrete formulation of such a language called Abstract Relational
Calculus (ARC), which is a strict generalization of Tuple Relational
Calculus (TRC) that assumes flat relational inputs and outputs and
so far has 3 modalities. By making implicit relational constructs
and dependencies explicit, ARC abstracts and surfaces common
query patterns found across different relational languages in a more
explicit representation. By treating human- and machine-facing
representations as modalities of the same underlying calculus, it
supports a more principled discussion of relational language de-
sign, for both the future human and machine audiences (Section 2).
@ We show ARC representations of running examples from recent
and older papers, which we believe support an ongoing discussion
(Section 3 and examples interspersed throughout Section 2).

2 ABSTRACT RELATIONAL CALCULUS (ARC)

We formalize Abstract Relational Calculus (ARC), a strict general-
ization of Tuple Relational Calculus (TRC) that models relational
query languages in a collection framework.!

ARC is an Abstract Relational Query Language (ARQL): a
semantics-first reference metalanguage that can encode the core
relational query patterns of SQL and various proposed alternatives.
We present ARC in 3 modalities: (i) a comprehension-based syntax
that generalizes TRC, (ii) an Abstract Language Tree (ALT) suited
for machine reasoning, and (iii) a diagrammatic higraph modality
suited for human inspection. Although equivalent, each modality
is tailored to a different audience.

2.1 Starting with TRC

We start with TRC because we have a strong conviction that the
named calculus perspective is a more suitable abstraction for an
ARQL than positional addressing. Codd [11] proposed to “replace

1We were considering the more explicit name Abstract Tuple Relational Calculus to
emphasize the lineage and leave space for a possible future Abstract Domain Relational
Calculus. But the more we thought about it, the more we came to believe that the
domain perspective is not well-suited for an ARQL (though it may well be a suitable
choice for a user-facing syntax as in Rel [8]). Alternative names considered were
Generalized TRC and Extended TRC (as in extended relational algebra).

CIDR’26, January 18-21, 2026, Chaminade, USA

positional addressing by totally associative addressing”, i.e. accessing
values by named attributes rather than by argument position. This
gives us logical independence not only from tuple order (row posi-
tion), but also from attribute order (column positions). Moreover,
Boolean statements in TRC are always domain independent [28] as
long as all range variables are bound to relations, a property that is
not widely known and does not hold for DRC.

Several recent works in our community are inspired by Data-
log, due to its handling of recursion. However, nothing prevents
us from adding recursion in the named attribute perspective (Sec-
tion 2.9). The positional (domain) perspective is also favored for
conciseness: One can simply write R(x, y) for predicate or function
application instead of 3r e R[r.A = x A r.B = y]. For an ARQL,
however, brevity is diametrically opposed to its goal of surfacing pat-
terns across languages, and making otherwise implicit constructs
explicit. As one example, an assignment predicate Q.A = r.A in
TRC, {Q(A) | Ir e R[Q.A = r.A]}, has no explicit counterpart
in DRC, where the same binding is implicit in the output tuple
{(x) | R(x)}. Conciseness is often associated with usability (fewer
letters to type). But we associate usability primarily with the cho-
sen modality rather than the relational core (see Fig. 2a vs. Fig. 2b,
which render the same language in two different modalities; the
diagrammatic modality supports faster human inspection).

Ignoring notational conventions, the following is a valid TRC
query according to a widely used textbook [20]:

{rA|reRA3s[r. B=s.BAs.C=0AseS]|}

We make two changes. First, we clarify the scopes. Whenever a
relation variable is quantified, then it is also bound to a relation:

{r.A|reR,3seS[r.B=s.BAs.C=0]}

Second, we have stricter scoping rules. We do not allow variables
bound in the body to appear in the head. Instead, we assign values
to the head variables explicitly via an assignment predicate:

{O(A) | IreR seS[Q.A=r AAr.B=s.BAs.C=0]} (1)

This means that all bindings (e.g., s € S) are now introduced by an
explicit quantifier. Notice that two bindings can share the same
quantifier (3r € R, s € S). We call the extra predicate Q.A = r.A an
assignment predicate to distinguish it from the other comparison
predicates. This membership-style formalization of TRC is devel-
oped in great detail in [28].

2.2 Language Modalities

Abstract Language Tree (ALT). Figure 2a shows our formalism of
an Abstract Language Tree (ALT) representation of (1) which makes
this nesting of one or more bindings under a quantifier explicit [28].
Notice that a query (or a collection) consists of a head and a formula
as body, and a quantification starts the body.

We also show conceptual links from predicates to the bindings
of their range variables. These are not typically shown in ASTs,
but they reflect the data structures created after the linking step
and symbol tables are created. Given what we perceive as a con-
fusion about what an Abstract Syntax Tree (AST) is supposed to
represent (recall Section 1), we say ALT but actually think about
this linked and hierarchical data structure as an Abstract Language

CIDR’26, January 18-21, 2026, Chaminade, USA

Higraph (ALH). Developing a good set of data abstractions is essen-
tial for solving problems. We believe a hierarchical graph is a good
abstraction for relational structures.

Relational Diagrams (Higraph diagrams). For computational
analysis, this pointer-based hierarchical graph structure is appropri-
ate. For human consumption, we use a diagrammatic representation
of the ALT where scopes represented as nodes in the ALT become
regions, and where the attributes of a table are represented adjacent
to the table name instead of using additional edges. For the relation-
ally complete fragment, these concepts were already formalized
as Relational Diagrams in more detail in [28-30]. A user study
has shown that these diagrams allow humans to recognize and
reason about patterns faster than SQL. The user study was repro-
duced [55]. Two recent tutorials [26, 27] give a detailed comparison
of this visual formalism against prior work.

Two minor differences from that prior work are: (i) we now
explicitly represent existential scopes (previously omitted because,
under set semantics, only negation requires an unambiguous scope
interpretation; this changes under bag semantics and aggregation),
and (ii) we visually decorate assignment predicates (crucial for
nested comprehensions).

2.3 Interpreting TRC as set comprehension

Everything so far was grounded in first-order logic. We next inter-
pret relational query languages in a collection framework, viewing
a query as an expression in a comprehension calculus with tuple
variables, quantifiers, and scoping. This interpretation will allow
us later to go beyond first-order logic, yet remain declarative.

A declarative specification of a set can be given by specifying the
elements that satisfy the properties of the set. For example, for sets
X and Y, the subset of their product where the former is smaller
than the latter is the set {(x,y) | x <y AxeX AyeY}. With our
stricter scoping rules, we would write it instead as

{(a,b) | IxeX,yeY[x <yAra=xAb=y]}

In a Haskell list comprehension syntax, this would be written as?
[(x,y) | x <= xs, y <-ys, x <yl

with its semantics given by the conceptual evaluation strategy:

for x in X:
for y in Y:
if x <y: yield (x, y)

This nested loop strategy gives both a semantic and operational
definition and is exactly the way we also explain the conceptual
evaluation strategy of SQL in our undergraduate database courses.
In the following, we use this formalism of comprehension of sets
(and more generally collections) yet also deviate in three details:
1) We use a tuple instead of a domain perspective. 2) We have an
explicit notation of scoping: The body can be a logical statement
instead of a conjunction of properties, thus the order of shown pred-
icates does not matter. What matters are the well-defined scopes.
3) We use our stricter rule on heads (heads need to be kept clean).

Notice that allowing nesting in the head is usually the way of
defining calculations with collections and list comprehensions. For

2Since value variables must start lowercase in Haskell, we use xs and ys instead of
our otherwise preferred notation X and Y.

Gatterbauer & Sabale

select x.A, z.B
from X as x
join lateral (
select y.A as B
from Y as y
where x.A < y.A) as z
on true

()
Figure 3: (a): Nested ARC from (2) expressed as lateral join in SQL.

example, in Haskell creating all the squares of even numbers is
canonically written with squaring of numbers happening in the
head:

[x*x | x<-ns, mod x 2 == 0]

Nesting in the head is also useful for the nested relational model,
and used in extensions of Datalog. But nesting in the head is not
needed (Section 2.12) and we believe it is distracting for the flat
(unnested) relational model.

2.4 Composability through orthogonal nesting

We allow arbitrary nesting of comprehensions in the body, i.e. nest-
ing is orthogonal (and therefore compositional): it does not interfere
with or restrict other constructs (subject to scoping rules). For ex-
ample, in Haskell, the following comprehension is allowed:

[(x, z2) | x<=xs, z<-[y|y<-ys, x<yll]

This expression would correspond in SQL to the lateral join shown
in Fig. 3a. It is written in ARC as follows:

{Q(A,B) |3xeX,ze{Z(B) | yeY[Z.B=y.AAx.A<y.A]l} (2)
[Q.A=x.AANQ.B=2zB|}

2.5 Grouping and aggregates in set semantics

Consider the task of summing the salaries of all employees in a table.
Under set semantics, projecting the salary column before applying
an aggregate function removes duplicates, so we obtain the sum of
distinct salaries rather than the sum over all employees. This is
usually not the intended behavior when computing aggregates.

A conceptually simple fix is to apply aggregate functions not
over individual columns but over entire sets of tuples, with each ag-
gregate operating on a designated position of those tuples (e.g.,
the last position in the unnamed perspective). This is the ap-
proach proposed by Klug [40] in his classical 1982 paper, in which
each aggregate function receives its own separate scope.> Subse-
quent comprehension-based database programming languages (DB-
PLs) [9, 21, 33, 53], including extensions of logic with aggregate
operators [37], and modern Datalog-inspired systems such as Souf-
flé [2] and Rel [8], inherited variants of this formalism.

This formalism has left two important legacies for set-based
languages: (1) Evaluating two different aggregate functions over
the same relation requires two logical copies of that relation because

3Like Datalog, Klug works in the unnamed (positional) perspective. To treat aggregates
as ordinary unary function symbols on relations, each aggregate must be tied to a
fixed column in advance. Consequently, applying a sum to the 2nd or the 3rd column
of the same relation requires two different aggregate functions (the column index
is effectively baked into the function name). This need for separate aggregates per
column complicates the formalism notably.

Database Research needs an Abstract Relational Query Language

each aggregate is evaluated in its own independent scope. (2) Except
for Rel [8], aggregate functions in these formalisms return only
their computed results, not the grouped attributes. These attributes
must instead be specified outside the aggregation scope and passed
into it via correlated nesting (a pattern we refer to as “from the
outside in” = FOI).

We discuss these issues in detail after introducing ARC’s han-
dling of aggregates. Notice how ARC serves as a reference language
that provides the vocabulary and structure needed to compare and
reason about the behavior of different languages. In doing so, ARC
abstracts from the idiosyncrasies of each language’s surface syntax
and instead captures their shared underlying semantic structure.

Aggregation in ARC. ARC’s collection framework supports a
conceptual evaluation strategy in which aggregates are defined over
the full join:* values are accumulated one element at a time, and
multiple aggregates can be evaluated in parallel by reusing the same
scope, as in SQL. Thus, conceptually, an aggregate has two inputs:
the full join (determined by the scope in which the aggregation
predicate appears) and a column identifier (i.e. range variables and
column name, as in TRC). If desired, deduplication of the input
values can be expressed either by first applying a projection or
by using dedicated aggregate functions (e.g., countdistinct instead
of count). To enforce set semantics of the output, deduplication is
applied to the result values of the scope. This is a flexible pattern that
allows ARC to recover the different interpretations of aggregates
from existing relational languages.

Recall that our aim is not to retrofit aggregates into classical first-
order logic [37], but to provide an abstract calculus that can model
the diverse computational patterns (including aggregation) found
in real relational languages. Relational Calculus here is meant as a
more general term than first-order logic. As Date writes [15, Ch. 8]
“calculus ... provides a notation for stating the definition of that desired
relation in terms of those given relations”, and “A fundamental feature
of the calculus is the range variable”, and “variable that “ranges
over” some specified relation” This definition of calculus naturally
motivates our proposal of Abstract Relational Calculus (ARC), an
abstract relational query language defined in a collection framework
that strictly generalizes TRC.

Consider a simple grouped aggregate query over a binary relation
R(A, B) that computes, for each distinct value of R.A, the sum of
associated R.B values. ARC expresses this query in comprehension
syntax as follows:

{Q(A,sm) | IreR, y, a[Q.A=r.AAQ.sm=sum(r.B)|} 3)

The aggregation predicate Q.sm = sum(r.B) accumulates and ag-
gregates values over the set of tuples produced by the conceptual
evaluation strategy.” Thus, aggregates appear as operands in predi-
cates. The query has a grouping operator y with grouping key r.A
that partitions the full join result within the quantifier scope into
groups based on bindings of the grouping key r.A. When the aggre-
gate is taken over the entire join result, then we write yp explicitly
(similar to “group by true” in SQL). Thus, the appearance of any

“4Recall that a full join of two or more relations contains no duplicates (i.e. it is a set) if
the input relations are sets as well.

Notice that the aggregation predicate serves here simultaneously also as assignment
predicate, although aggregation predicates can also serve as comparison predicates as
we see later.

CIDR’26, January 18-21, 2026, Chaminade, USA

select R.A, sum(R.B) sm
from R
group by R.A

(a) Grouped aggregate in SQL
COLLECTION
': HEAD: Q(A, sm) /_\()
QUANTIFIER 3 //_\
A
EGROUPING: r.A A A
AND A sm B

PREDICATE: Q.A = r.A L J
PREDICATE: Q.sm = sum(r.B)

(b) Grouped aggregate in ARC as ALT and higraph modalities

Figure 4: The semantics of a simple grouped aggregate query in a
“from the inside out” pattern represented in SQL (a) and ARC (b), (3).
Red overlay arrows indicate scoping, binding and grouping.

aggregation predicate turns an existential scope into a grouping
scope and requires a grouping operator.

In the comprehension syntax and ALT, the grouping operator is a
child of the quantification scope and turns this scope into a grouping
scope. In the higraph modality, grouped attributes are highlighted
with a gray shade, and the scope is drawn with a double-lined
boundary to indicate a grouping scope (Fig. 4b).

From the inside out (FIO). In ARC, grouping and aggregation
happen on attributes inside a scope, and the resulting grouped
and aggregated attributes are then available outside that scope.
We therefore call this pattern “from the inside out” It corresponds
exactly to the way SQL would represent the grouped aggregate
query (Fig. 4a) [3, Database 720], and to extended relational algebra:

YA,sum(B)—sm [R]
Rel [8] has the same relational pattern:
def Q(a,sm) : sm = sum[(b) : R(a,b)]

Rel’s interpretation of aggregate queries is that of variable elimina-
tion [38], and the query as written in Rel can be viewed as creating
a lookup function f with f(a) := Xp.r(ap) -

From the outside in (FOI). Several languages represent our
simple grouped aggregate query in a “per-outer-tuple” pattern.
Klug’s formalism [40] uses an unnamed variant of a tuple relational
calculus that uses nesting in the head. Slightly changing the syntax
and porting it to a named perspective, the query would be written
as follows:*

{(r.A, sumy{(r2.A,r2.B) | ,€ERA . A=r.A}) | reR} (4)

Here, the first range variable r € R fixes the grouping key r.A, and
the second range variable r; € R performs the aggregation for each
value in r.A.

Hella et al. [37] use the same pattern, but in an unnamed domain
perspective:

(3y-R(x,) A (g = Aggrs z.(R(x, 2), 2)) ©)

In this query, x is a free variable, and the conjunct Jy.R(x, y) range-
restricts its admissible values to those that occur in R.A. The aggre-
gate Aggrs z.(R(x, z), z) binds z and is parameterized by the free
variable x, which serves as the grouping key.

®Original notation: (v;[1], sumy ((22[1], v2[2]) : R(v2) : v2[1] = 01[1])) : R(2y).

CIDR’26, January 18-21, 2026, Chaminade, USA

select distinct R.A, X.sm
from R join lateral
(select sum(R2.B) sm

select distinct R.A,
(select sum(R2.B) sm

from R R2 from R R2
where R2.A=R.A) where R2.A=R.A) X
from R on true
(a) Scalar subquery in SQL (b) Lateral join in SQL
COLLECTION
HEAD: Q(A,sm)

QUANTIFIER 3

L COLLECTION “

HEAD: X(sm) A
QUANTIFIER 3

GROUPING: ¢
AND A
PREDICATE: r2.A = r.A
PREDICATE: X.sm = sum(r2.B)
AND A
PREDICATE: Q.A = r.A
PREDICATE: Q.sm = x.sm
(c) FOI pattern in ARC

Figure 5: The semantics of a simple grouped aggregate query in a
“from the outside in” pattern represented in SQL with a scalar sub-
query (a) or lateral join (b), and ARC (c), (7). This relational pattern
corresponds to the way Klug [40] (4), Hella et al. [37] (5), and Souf-
flé [2, 49] (6) express the query.

In Soufflé [2, 49], the query follows the same pattern:
Q(a,sum b: {R(a,b)}) :- R(a,.). (6)

The documentation [2] describes this pattern explicitly: “You can-
not export information from within the body of an aggregate. This
means that you cannot ground a variable from within the scope of
the aggregate body and expect this grounding to transfer to the outer
scope”

This pattern of using two range variables over the same relation
to perform a grouped aggregate query without an explicit GROUP
BY clause can be represented in SQL either via scalar subqueries or
via lateral joins. Figure 5a and Fig. 5b show two different syntactic
variants in SQL that represent this pattern. Notice that both queries
are semantically equivalent: a single-valued scalar query can always
be written as a lateral join (see Section 2.12).

In ARC, the same pattern expressed as ALT, higraph, and com-
prehension syntax is shown in Fig. 5¢ and as:

{Q(A,;sm) | FreR xe{X(sm) | Ir,eR,yp[r2.A=r.AA 7)
X.sm = sum(r2.B)]}[Q.A =r.AA Q.sm = x.sm]}

Notice that while SQL does not use an explicit grouping clause when
an aggregate is computed over the entire relation, ARC indicates
the aggregate evaluation explicitly with a grouping on the empty
set: there is just one group, an aggregate is evaluated over all tuples
(similar to “group by true” in SQL), and ARC makes this explicit.
Notice that ARC introduces an explicit intermediate defined re-
lation X that exists only implicitly in the surface syntax of several
languages. While function composition, as in (g o f)(x) = g(f(x))
or the head-nested scalar subquery, hides an intermediate relation,
the lateral-join formulation in SQL already exposes it as a derived
relation. Recall that an abstract relational query language serves as
a reference language and should make implicit patterns explicit. Thus,
ARC represents these conceptual structures explicitly as defined

Gatterbauer & Sabale

select R.dept, avg(S.sal) av
from R, S

where R.empl=S.empl

group by R.dept

having sum(S.sal)>100

(a) Multiple aggregates in SQL

COLLECTION
HEAD: Q(dept,av)
QUANTIFIER 3
L COLLECTION
HEAD: X(dept,av,sm)
QUANTIFIER 3

GROUPING: r.dept

AND A
PREDICATE: r.empl= s.empl
PREDICATE: X.dept = r.dept
PREDICATE: X.av = avg(s.sal)
PREDICATE: X.sm = sum(s.sal)

— AND A
PREDICATE: Q.dept = x.dept
PREDICATE: Q.av = x.av
PREDICATE: x.sm > 100

(b) ARC ALT modality
4 ——)
dept
empl
)
dept [<1 dept
av &1 av NSaug, empl
sm RSsum sal
->100
-

(c) ARC higraph modality

Figure 6: (a): Running example for multiple aggregates from [37] in
SQL (a) and ARC (b), (c), (8).

relations, which provides a clear abstraction for understanding how
queries are built in a modular way from smaller components, even
when they are never or cannot be materialized (see Section 2.13).
Also notice that we do not need to name them in the higraph modal-
ity (Fig. 5¢): they exist on the Canvas as independent topological
entities and may remain unnamed.

Multiple aggregates. We illustrate our formalism using the
running example from Hella et al. [37] “returning the average
salary for each department that pays total salary at least 100” over
a schema (with slightly simplified relation names and constant)
R(empl, dept), S(empl, sal) representing employees, their depart-
ments, and their salaries. Figure 6a shows the corresponding SQL
query [3, Database 740].

In ARC, a HAVING clause is simply a selection applied after an
aggregation:

{Q(dept, av) | Ix € {X(dept, av, sm) | Ar€R,SES, Yr.dept (8)
[X.dept = r.dept A X.av = avg(s.sal) A X.sm = sum(s.sal) A
r.empl = s.empl| }[Q.dept = x.dept A Q.av = x.av A x.sm > 100] }

The query expressed in the language Laoq: ({<}, {2, AVG}) by
Hella et al. [37] defines an output relation Q(y, g) via the following

Database Research needs an Abstract Relational Query Language

4)

7 A 4 N\

dept dept dept

empl empl empl
/]

av empl empl empl
\ sal sal sal
/ S V) - W)
X 4 Y o
)

Figure 7: Pattern-preserving ARC higraph representation of the
multiple-aggregate query in the formalism by Hella et al. [37] (9).

expression:’

Q(y. q) := (IxTz.R(x,y) A S(x,2)))
A (g = Aggryex, z.(R(x, y) A S(x,2),2))
A (Aggryx, z.(R(x,y) A S(x,2),2) > c100)

For a fixed y, the aggregate term Aggry, x, z.(R(x,y) A S(x, 2), z)
ranges over all distinct rows (x, z) such that R(x,y) A S(x, z) holds.
It collects the bag {z | 3x, z[R(x,y) A S(x,z)]} (with multiplici-
ties) and applies the summation operator X (sum) to that bag. This
formalism (inherited from Klug [40]) changes the signature of the
query: the same base relations are referenced multiple times, once
in each aggregation scope, and once outside the aggregation scopes.
This leads to a modified relational pattern, shown in the higraph
modality (Fig. 7) and in comprehension syntax modalities:

{Q(dept,av) | Ar3€R, s3€S, (10)
x€{X(av) | ArieR,s; €S, Yr1.dept
[ry.dept = r3.dept A ri.empl = s;.empl A X.av = avg(s;.sal)]},
ye{Y(sm) | I, €R, 52 €8, Yro.dept
[ro.dept = r3.dept A ry.empl = s,.empl A Y.sm = sum(sz.sal)]| }
[Q.dept = r5.dept A Q.av = x.av A rs.empl = s3.empl A y.sm > 100]}

While Rel [1, 8] follows the FOI pattern for aggregation, it still in-
herits the pattern of using distinct aggregation scopes (i.e. separate
subqueries) for each aggregate over the same relation:

def Q(d,av) : (11)
av = average[(e,s) : R(e,d) and S(e,s)] and
sum[(e,s) : R(e,d) and S(e,s)] > 100

Figure 8 shows this relational pattern in ARC’s higraph modality,
and the corresponding comprehension syntax is:

{Q(dept, av) | (12)
xe€{X(dept,av) | Ir1 €R, 51 €S, ¥r, dept
[X.dept = ri.dept A ri.empl = sy.empl A X.av
ye{Y(dept,sm) | Ir €R, 52 €S, Yr,.dept
[Y.dept = ry.dept A ry.empl = sy.empl A Y.sm = sum(s;.sal) |}
[Q.dept = x.dept A Q.av = x.av A x.dept = y.dept A y.sm > 100] }

avg(sy.sal)]},

Notice the similarities and differences between the relational pat-
terns of Fig. 8/(12) and Fig. 7/(10).

"We made an adjustment to the query after confirming with the authors that
our interpretation was correct. The aggregation as originally written in [37],
Aggryz.(3y.R(x, y) A S(x,z),z) would, on a database containing two employ-
ees with the same salary in the same department, count that salary only once rather
than twice. Also, “c190” is a language-specific syntax for referring to the constant 100.

CIDR’26, January 18-21, 2026, Chaminade, USA

(>100 \
R

sal

empl
ﬂ)

empl

dept U dept

av

J

Figure 8: Pattern-preserving ARC higraph representation of the
multiple-aggregate query written in Rel (11).

Logical sentences and integrity constraints. Expressions that
evaluate to true or false can also contain aggregates. Furthermore,
aggregation predicates may be comparison predicates, not assign-
ment predicates. Figures 9b and 9d show two ARC sentences that
illustrate this pattern (see [28] on how to read the negation scope):

dreR[3seS, yp[r.id = s.id A r.q < count(s.d)]] (13)
—3reR[3seS, yp[r.id = s.id A r.q > count(s.d)]] (14)

By contrast, the closest SQL formulations, shown in Figures 9a
and 9c, can only return a unary relation representing the truth
value, not a Boolean sentence directly [3, Database 737].

select exists(
select 1
from R R
where R.q <= id
(select count(S.d) L y—count
from S Lo €
where S.id=R.id))

() (b)

select not exists(
select 1
from R
where R.q >
(select count(S.d)
from S
where S.id=R.id))

(© (d)

Figure 9: Boolean queries and constraints (13), (14).

2.6 Language Conventions

Consider an instance with R = {(1,2)} and S = 0. The following
Soufflé rule computes, for each R(ak, _), the sum of all b such that
S(a,b) and a < ak:

Q(ak,sm) :- R(ak,_), sm = sum b: {S(a,b), a<ak}. (15)

On this instance, the rule derives Q(1, 0) because Soufflé evaluates
a sum over an empty set as 0 (Soufflé has no NULL). In contrast, the
equivalent SQL queries in Figs. 13a and 13b (if we add DISTINCT
to the select clause) return the row (1, NULL) on the same instance,
since in SQL the result of SUM over zero input rows is NULL.

CIDR’26, January 18-21, 2026, Chaminade, USA

We treat such choices (how aggregates behave on empty inputs,
and more generally how missing values are represented) as con-
ventions. They are orthogonal to the relational structure of the
query (see Fig. 13d): changing the convention affects the observ-
able result, but not the underlying relational pattern. Accordingly,
ARC abstracts from these conventions and focuses on the relational
composition of queries.

2.7 Sets or bags? Not an issue for ARC but a
matter of convention

Nothing needs to change in the surface syntax of ARC if relations
are interpreted as bags (multisets) rather than sets. The conceptual
evaluation still ranges over tuples as before: each tuple in one rela-
tion can be paired with each tuple in the other relation, regardless
of whether a tuple has a duplicate or not. Consequently, a rela-
tional QL does not need to be designed for sets or bags; instead the
same query can be interpreted under either set or bag semantics.
Choosing set or bag interpretation is orthogonal to language design.

A common convention in the collection-types literature is to
signal bag semantics by writing bag brackets (here: {-}}) instead
of set brackets {-}, e.g., {Q(A) | r € R[Q.A = r.A]} instead of
{O(A) | reR[Q.A =r.A]}. However, we treat this as a convention
rather than part of the concrete syntax of query strings. The syntax
of ARC does not commit to sets or bags, and the choice of semantics
is fixed independently of the relational patterns expressed by the
query.

Whether a query is interpreted under set or bag semantics mat-
ters for evaluation and optimization, because some rewrite rules
only apply under set semantics. For example, consider the nested
query

{Q(A) | reR[IseS[Q.A=r.AAr.B=s.B]]}
Under set semantics this can be unnested to
{Q(A) | IreR,seS[Q.A=r.AAr.B=s.B]}

Under bag semantics, however, the two can differ: the nested for-
mulation produces Q(A) once per matching occurrence of r (a
semijoin-like behavior), whereas the unnested formulation pro-
duces Q(A) once per matching pair (r, s), which multiplies output
multiplicities when multiple tuples of S share the same B-value.

Deduplication. Removing duplicates (as in DISTINCT) is ex-
pressible via grouping on all projected attributes and does not
require a dedicated operator. For example, deduplicating a binary
relation R(A, B) can be written as:

{O(A,B) | 3reR, yra,r8[Q.A=r.AAQ.B=rBl}.

Recall that an aggregate predicate entails a grouping clause, but
grouping can also appear without having an aggregate predicate.

2.8 Negation, Disjunction, and Union

Union of relations is treated as disjunction in TRC and ARC. Nega-
tion and disjunction are discussed in detail in [28].

2.9 Recursion

ARC supports recursion with the same least-fixed-point semantics
as Datalog, but expressed in our named perspective. Let P(s, t) be
the parent relation, where s is the source (parent) and ¢ is the target

Gatterbauer & Sabale

COLLECTION
HEAD: A(s,t)
OR v
QUANTIFIER 3

AND A
PREDICATE: A.s
PREDICATE: A.t
QUANTIFIER 3

AMH

AND A
PREDICATE: A.s
PREDICATE: p.t

PREDICATE: A.t

i
S
T
e |
S
T
S
T

@ (b)

Figure 10: ARC representations for recursive query (16).

(child). In Datalog, the ancestor relation A(s, t) is defined by the
familiar two-rule program:

A(X,y) = P(x,y)
A(x,y) = P(x,2), A(z,y)

In Datalog, multiple rules with the same head are combined by
union, and recursion is obtained by taking the least fixed point
of that union. In ARC, a relation is defined by a single construct
and the implicit union of multiple rules is written as a disjunction
within one definition.

{A(s,t) |FpeP[As=psAALt=p.t]V (16)
dpeP,azeAlAs =p.sAp.t =az.s Aaxt =At]}

2.10 Null values and (NOT) IN predicates

SQL evaluates predicates in three-valued logic, so comparisons in-
volving null may yield unknown. This interacts poorly with certain
predicates, notably NOT IN. For example, the SQL query in Fig. 11a
returns the empty set whenever S contains any row with null in
column A, because the membership test becomes unknown and the
WHERE clause filters out the row.

But this behavior can be reproduced within two-valued logic
by rewriting NOT IN into NOT EXISTS while making null checks
explicit [43] as in Fig. 11. We can thus replicate SQL’s NULL behavior
in our collection framework as well:

{O(A) | 3reR[Q.A=r.AA 17)
—(3seS[s.A=r.AVsAisnull vV r.Aisnull])]}

select R.A from R
where not exists
(select 1
from S
where S.A=R.A
or S.A is null
from S) or R.A is null)

(a) SQL: NOT IN (b) SQL: NOT IN with NOT EXISTS

Figure 11: Replicating SQL’s null behavior for the NOT IN clause (a)
with NOT EXISTS (b). (17) shows their ARC representation.

select R.A

from R

where R.A not in
(select S.A

Database Research needs an Abstract Relational Query Language

select R.m, S.n

from R

left outer join S

on (R.h=11 and R.y=S.y)

(a) Complicated outer join
condition expressed in SQL

Figure 12: Outer joins and their higraph representation.

2.11 Left and full outer joins

A priori, outer joins are not naturally expressible with plain com-
prehensions: comprehensions range over existing collections, so a
binding with no match simply disappears. For example, a left join
between R and S can be written as the union of the matching and
the non-matching cases:

{Q(A,B) | 3reR,seS[Q.A=r.AANQ.B=s.BAr.A=s.B|} U
{QO(A,B) | IreR[Q.A=r.AAQ.B=null A ~(3s€S[r.A=s.B])|}

We therefore extend comprehensions with an explicit join anno-
tation in the binding list (similar in spirit to the grouping operator).
A join annotation specifies (i) which bound tables are combined
by inner/left/full joins and (ii) the precedence (nesting) of these
joins. With this extension, the left join above can be expressed as
the single comprehension

{Q(A, B) | JreR,seSs,left(r,s)
[0.A=r.AAQ.B=s.BAr.A=s.B]}

The annotation inner is k-ary, while left and full are binary. Any
scope without an explicit outer-join annotation is inner by default.
For example, Ir e R,s € S,t € T[...] is shorthand for Ir e R;s €
S,teT,inner(r,s,t)[...], and an inner join followed by a left join
can be written as Ir e R, s €S, t € T, left(r, inner(s, t))[. . .]. Our join
annotations can model arbitrary nestings of outer joins, including
cases that are awkward to express in surface SQL syntax [12, 16].

At the higraph level, we depict outer join conditions by marking
the optional side with an empty circle (inspired by ERD notation).
Precedence scopes mirror the nesting of join annotations and can
also cover cross joins. For example, Fig. 12a (from [12, example N’])
corresponds to:

{Q(m,n) | AreR, s €S, left(r, inner(11,s)) (18)
[Om=rmAQn=snAry=syArh=11]}

Here a literal ¢ used as a leaf inside a join annotation denotes a

singleton relation (a virtual unary table) containing just the value

¢; hence inner(11, s) is a cross join between S and this singleton.

Because outer cross joins contribute no join-condition edge in the
higraph, we annotate them textually (e.g., with “x”) when needed.

2.12 Representing head aggregates

Recall from Section 2.3 that ARC does not allow nesting (subqueries)
in the head, and from Section 2.5 that ARC represents head aggre-
gates as a form of lateral join in the body. We call a head aggregate

CIDR’26, January 18-21, 2026, Chaminade, USA

select R.A,
(select sum(S.B) sm
from S
where S.A<R.A)
from R
(a) Scalar query
select R.A, X.sm select R.A, sum(S.B) sm
from R join lateral from R
(select sum(S.B) sm left join S
from S on S.A<R.A
where S.A<R.A) X group by R.A
on true . . "
(c) Left join (incorrect translation;
(b) Lateral query shown as counterexample)
COLLECTION
HEAD: Q(A,sm)

QUANTIFIER 3

L COLLECTION [a | R

HEAD: X(sm) A A
QUANTIFIER 3 sm &)

GROUPING: @ X A

AND A sm
PREDICATE: s.A < r.A
PREDICATE: X.sm = sum(s.B)

AND A
PREDICATE: Q.A = r.A
PREDICATE: Q.sm = X.sm

(d) Relational Pattern of a single-valued head-nested query
Figure 13: (a) A single-valued correlated scalar SQL query with an
aggregate in the head. (b) An equivalent formulation that pushes the
aggregate into the body using a lateral join. (c) An alternative formu-
lation using a left outer join and GROUP BY. Only the lateral-join
formulation (b) is guaranteed to preserve the semantics under both
set and bag semantics (in particular, when R contains duplicates). (d):
ARC does not allow nesting in the head and therefore represents
such scalar queries directly in the lateral-join form (b).

in any relational language single-valued if, for every result tuple of
the query body, the aggregate evaluates to a single scalar value (or
null). This class includes SQL scalar subqueries such as Fig. 5a, as
well as Soufflé head aggregates such as query (6). For those queries,
the overall result is a flat relation, i.e., it contains no nested col-
lections. Any single-valued head aggregate can be rewritten as a
lateral join in the body.? The intuition is that a lateral join faithfully
preserves the intended per-tuple semantics of a correlated scalar
subquery: the inner query is re-evaluated once per outer tuple, with-
out accidental grouping or merging. In contrast, a rewrite based on
LEFT JOIN + GROUP BY [21, 23] fails to preserve the correlation
pattern under bag semantics when grouping coalesces duplicates
in the outer relation into a single output row.

For example, consider the single-valued SQL scalar subquery
in Fig. 13a and two rewrites: as lateral join in Fig. 13b and as left
join in Fig. 13c [3, Database 720]. Both rewrites are correct if the
inputs contain no duplicates. Under bag semantics, however, if
relation R contains duplicate values (and rows don’t have a unique
key), then the query in Fig. 13c collapses all identical R.A values
into a single group and no longer reflects the “once per tuple of R”
evaluation of the subquery.’ In contrast, the lateral join in Fig. 13b
remains equivalent even under bag semantics, because the lateral

8This has already been observed in [17, Sect. 10] for set semantics.
°If each outer tuple had a unique identifier, then we could add it to the GROUP BY
clause and preserve the semantics.

CIDR’26, January 18-21, 2026, Chaminade, USA

defined relations

base intensional | external abstract
relations relations relations relations
C J
Y
EDB & IDB & built-ins in Datalog
%(—/ %(—/

defined in a relational language

Figure 14: Base relations are given extensionally by enumeration.
Defined relations are given intensionally by definitions. Intensional
relations (views, CTEs, IDBs) are defined by relational queries and
may be materialized. External relations (built-ins) are defined outside
the relational language and may have infinite extension. Abstract
relations are possibly domain-dependent relational expressions that
help abstract and modularize large queries.

join preserves the per-outer-tuple semantics. In other words, a
single-valued scalar subquery and its lateral-join encoding use
the same conceptual evaluation strategy. For that reason, ARC
represents scalar queries as lateral joins (Fig. 13d).

2.13 Defined relations (incl. abstract relations)

In principle, relational query languages can treat functions and
arithmetic predicates uniformly as relations. Unlike base relations
(base tables), defined relations are not specified extensionally by
enumerating their tuples, but intensionally via a definition. Among
defined relations, intensional relations (e.g., views and CTEs = Com-
mon Table Expressions) are definable in the relational language and,
over a finite database instance, have a finite extension (and thus
can be materialized). In Datalog terminology, base and intensional
relations correspond to extensional and intensional predicates (EDB
and IDB), respectively (Fig. 14).

2.13.1 External relations. In contrast to intensional relations, ex-
ternal relations (often referred to as external predicates) are defined
outside the relational language and may have infinite extension.
Intuitively, they correspond to built-in predicates (or built-ins) in
Datalog, i.e. predefined relations that extend pure logical atoms
with computational or domain-specific functionality, e.g. the arith-
metic predicate “+”, equality “=", comparisons such as “>”, or string
comparison such as SQL’s “LIKE” operator.'”

EXAMPLE 1 (ARITHMETIC AND COMPARISON OPERATORS). A rela-
tional interpretation of the arithmetic operator “Minus” (for “=” as
in5—3=2)is given by:

{Minus(left, right, out) | Minus.out = Minus.left — Minus.right}
Thus, in the following query with an arithmetic minus operator

{Q(A) | 3reR,seS,teT[Q. A=r.AAr.B—s.B> t.B]} (19)

we can relationalize the minus operator (i.e., reify it as a relation)

and rewrite the query. This yields a join query:

{Q(A) | 3reR ;seS, teT, f € Minus[Q.A =r.AA (20)
f.left=r.BA f.right =s.B A f.out > t.B]}

1%While the comparison operator “>” may be part of a relational vocabulary, we cannot
define a binary relation Bigger(A, B) containing pairs of integers where A > B with
relational operations alone.

Gatterbauer & Sabale

select R.A
from R,S,T
where R.B-S.B>T.B

(2)

select R.A

from R,S,T,">", "=-"
where R.B="-".left
and S.B="-".right
and ">".left="-".out
and ">".right=T.B

(b) named perspective

select R.A

from R,S,T

where "-"(R.B,S.B,x)
and ">"(x,T.B)

(e) diagram for Fig. 15b

(c) positional perspective
Figure 15: In relational languages, every computable relation can be
relationalized as an external relation with externally defined seman-
tics. For example, (b)-(e) use an external relation for minus called
“—”.(b)/(c): Compare the syntax if external relations are interpreted
either under a named or unnamed (positional) perspective in SQL.

We can also relationalize the comparison operator > as a separate
relation named “Bigger”:

{Bigger(left, right) | Bigger.left > Bigger.right}
and rewrite the query as an equijoin between relations [54]:
{Q(A) | IreR,seS,teT, f € Minus, g € Bigger (21)
[QA=r.ANAf.left=r.BA f.right=s.BA
f.out = g.left A g.right = t.B] }
Queries (19) and (21) correspond to the SQL queries from Fig. 15a

and Fig. 15b, respectively. Figures 15d and 15e show the queries
from (20) and (21), respectively (with minus shown as “=’, etc.).

Discussion. o In Example 1, the relational definition of the
Minus relation uses the arithmetic operator “~”. Its meaning is
therefore not determined by pure relational operators and must be
provided by primitives outside the relational core. Such primitives
are often called “built-ins”; we use the term external relation to em-
phasize that their semantics is derived from concepts outside core
relational constructs. For example, [Minus] = {(x,y,z) | z = x—y}.
If Add is already defined as a primitive operator, then subtrac-
tion can also be characterized via addition: [Minus]| = {(x, v, 2) |
Add(y, z, x)}. More generally, we can relationalize (reify) such op-
erations (i.e., treat them as relations) to make their use explicit
in queries. We also note that Fig. 15c illustrates a mixing of the
named perspective (SQL) with an unnamed perspective where the
operands of predicates are accessed positionally; such mixing can
break compositionality (here, the join attribute x is not defined).
The formalities of such external specifications are not our focus; we
instead focus on modular building blocks of relational languages,
of which external relations are one.

@ The comprehension-style definition of Minus in Example 1
also raises the usual safety issue: none of its “attributes” are range-
restricted, so the relation is unsafe and ill-defined. We can restore
safety by guarding the operands and result with a domain relation

Database Research needs an Abstract Relational Query Language

/

/

Likes

Likes

Likes

Likes

CIDR’26, January 18-21, 2026, Chaminade, USA

4 ——

beer left
(b)
drinker Lm %W drinker
drinker
Likes Likes / | beer
[arinker left ot
right | IS rght
N
N (Cocer
(@) (c) (d)

Figure 16: By using abstract relations, the unique-set query Fig. 17 can be modularized and now more easily interpreted as finding drinkers s.t.
there is no other drinker who likes both a subset and a superset of the beers. Notice that the newly defined relation “Subset” does not have a
well-defined extension outside the context in which it is used, and that is OK.

D(v):

{Minus(left, right, out) | 3d, € D, d, € D, d5 € D[Minus.left = d;.uA
Minus.right = dy.v A Minus.out = ds.v A ds.v = dy.v — dp.v]}

For our purpose, we abstract from such concrete definitions: we
assume that external relations can be defined meaningfully and
are then accessible to the language. Their concrete realizations are
language-specific and not our focus. Under this abstraction, any
computation (including arithmetic operators) can be seen as a rela-
tion, and an abstract relational query language treats computation
uniformly as relations.

e Closely related recent work [35] formalizes external predi-
cates (which evaluate to either true or false when all operands are
fixed) as possibly infinite relations whose extensions are not stored
in the database, but are accessed through specific access patterns.'!
Intuitively, a predicate’s truth value is a function of its inputs (e.g.,
Add(2,3,5) is true). Access patterns turn such Boolean predicates
into a family of (multi-valued) functions that a query engine can
call when only a subset of the inputs are fixed (e.g., Add(2, x,5)
represents 5 — 2 and returns x = 3), while still fulfilling safety
requirements. This lets operands of external predicates be joined
(e.g., the join “-”.out = “>”left between two external predicates
in Fig. 15e prevents them from being evaluated as independent
Boolean predicates) and also enables such predicates to produce
outputs when connected via assignment predicates (see e.g., Sec-
tion 3.1 and Fig. 20). In other words, richer safety conditions allow
these predicates to be treated like ordinary database relations dur-
ing query evaluation.

e Other recent work [28] relationalizes join and selection pred-
icates into “anchor relations” in order to support arbitrarily nested
disjunctions in a diagrammatic presentation (higraph modality).

Notice a slightly different motivation for the word “external predicate”: For [35],
external predicates are “computed on demand rather than stored”, they are external to
the database, and only usable through a controlled interface (access patterns). We use
the word external to focus on the fact that their formal definition needs to bring in
concepts that are external to the relational model and cannot be described by standard
relational operators. Both interpretations agree that operations can be relationalized
(reified, i.e. turned into relations) for the purpose of analyzing and describing queries.

2.13.2 Abstract Relations. Abstract relations are relation symbols
defined within a relational language to name and abstract a sub-
query. In contrast to external relations, abstract relations need not
denote a standalone, well-defined extension on their own. In par-
ticular, an abstract relation may be domain-dependent and thus
may not have a well-defined extension on its own. Nevertheless,
when an abstract relation occurs inside a safe surrounding query, it
can be interpreted as denoting some reasonable finite relation that
makes the overall query well-defined. This is exactly the point of
abstraction: when analyzing the intent of the larger query, we do
not need to reason about the internal details of the module or its
standalone extension.

EXAMPLE 2 (UNIQUE-SET QUERY). We are given a single relation
Likes(drinker, beer), which we abbreviate by L(d, b), and wish to
find drinkers who like a unique set of beers, i.e., no other drinker
likes the exact same set of beers (see [41, Fig. 1], [31, Fig. 9] for
extensive discussion of this query). (22) In the relationally complete
fragment (the first-order fragment), the query is written as Fig. 17
in SQL and as follows in TRC and thus also in ARC:

(0(d) | 3L eL[0.d = I,.dA
—(3LeLl[l.d <> l;.dA
(Al eLls.d = b.dA
(Al eL[lb = b Alnd = L.d])])A
(T eLls.d = I.dA
~(Jlel[ls.d =l.d Als.b =15.0])])]]}

To modularize the query, we define an abstract relation Subset

(denoted S in ARC):
{S(left, right) |
—(3eL[ls.d = S.leftn
=(3lyeL[ly.b =15.b A ly.d = S.right])])}
Taken in isolation, that definition is not safe and therefore does
not define a view with a well-defined extension. But in the context

of the enclosing query, the module represents exactly the intended
subset relation between drinkers and allows us to modularize and

(22)

(23)

CIDR’26, January 18-21, 2026, Chaminade, USA

select distinct L1.drinker
from Likes L1
where not exists
(select 1
from Likes L2
where L1.drinker <> L2.drinker
and not exists
(select 1
from Likes L3
where L3.drinker = L2.drinker
and not exists
(select 1
from Likes L4
where L4.drinker = L1.drinker
and L4.beer = L3.beer))
and not exists
(select 1
from Likes L5
where L5. drinker = L1.drinker
and not exists
(select 1
from Likes L6
where L6.drinker = L2.drinker
and L6.beer = L5.beer)))

Figure 17: Unique-set query (Example 2).

compartmentalize the query. Abstracting it as such we can use it
and rewrite the original query more concisely as:
{0(d) | 3L eL[Q.d =;.dA (29)
—(3ALeL,s,€8,5€S[lr.d <> l1.dA
si.left = 11.d A sy.right = lp.dA
sp.left = I,.d A sp.right = 1;.d])]}

In the diagrammatic modality, abstract relations correspond to
sub-diagrams that can be collapsed and expanded: a complex sub-
structure (including its internal scopes) can be replaced by a clearly
distinguished module node labeled with the abstract relation name,
and later expanded again. This supports complexity management
for large queries via modularization, hierarchy, and “zooming” (see
also [45, Sect. 4.4]).

3 TWO EXAMPLES

3.1 Matrix multiplication

We now illustrate the matrix-multiplication example from the Rel
paper [8] Rel expresses matrix multiplication between matrices
A and B in sparse relational form and domain-based positional
notation as follows:

def MatrixMult[i,j] : (25)
sum[[k] Ali,k]I*B[k,3j1]

If we allow arithmetic operations in ARC and assume all matrices
use the same schema (row, col, val), the same computation can be
written in the named perspective as:

{C(row, COL Val) | JaeA, b €B, Ya.row,b.col
[C.row = a.row A C.col = b.col A a.col = b.rowA

C.val = sum(a.val * b.val)|}

Gatterbauer & Sabale

select distinct D1.drinker as left,
D2.drinker as right
into Subset
from Likes D1, Likes D2
where not exists
(select 1
from Likes L3
where not exists
(select 1
from Likes L4
where L4.beer = L3.beer
and D2.drinker = L4.drinker)
and D1.drinker = L3.drinker)

(2)

drinker

left
right

Likes

Likes

i

(b)
Figure 18: Safely defined Subset relation for (Example 2).

select distinct L1.drinker
from Likes L1
where not exists
(select 1
from Likes L2,Subset S1,Subset S2
where L1.drinker <> L2.drinker
and S1.left=L1.drinker
and S1.right=L2.drinker
and S2.left=L2.drinker
and S2.right=L1.drinker)

Figure 19: Query from (Example 2) rewritten to use the view from
Fig. 18.

a——
row
col
row / val
val & out

col $1 “

\ $2 row
\\\\\\\\ val
col

Figure 20: Matrix multiplication (25)/(26) in the higraph modality.

In the higraph modality Fig. 20, multiplication is modeled via an
external relation "*"($1, $2, out):
{C(row, col, val) | Jac€ A, beB, f€"*", Ya romb.col (26)
[C.row = a.row A C.col = b.col A a.col = b.rowA
C.val = sum(f.out) A f.$1 = a.val A £.$2 = b.val]}

3.2 An illustration of the count bug

The count bug [24] is a famous example of an attempted refor-
mulation of a nested correlated query like the one in Fig. 21a and
replacing it with Fig. 21b (the incorrect translation was given in

Database Research needs an Abstract Relational Query Language

select R.id

from R

where R.q =
(select count(S.d)
from S
where S.id = R.id)

(a) Count bug: version 1

id id id
q == d

(d) Count bug: version 1

COLLECTION
HEAD: Q(id)
QUANTIFIER 3

AND A
PREDICATE: Q.id = r.id
QUANTIFIER 3

GROUPING: o

AND A
PREDICATE: r.id = s.id
PREDICATE: r.q = count(s.d)

(g) ALT version 1

select R.id

from R,
(select S.id, count(S.d) as ct
from S
group by S.id) as X

where R.q = X.ct and R.id = X.id

(b) Count bug: version 2

N = =
id — id

id id
q | «ct countso ¢
(e) Count bug: version 2
COLLECTION
HEAD: Q(id)

QUANTIFIER 3

L COLLECTION
HEAD: X(id, ct)
QUANTIFIER 3

GROUPING: s.id
AND A

PREDICATE: X.id = s.id
PREDICATE: X.ct = count(s.d)
AND A
PREDICATE: Q.id = r.id
PREDICATE: r.id = x.id

PREDICATE: r.q = x.ct
(h) ALT version 2

CIDR’26, January 18-21, 2026, Chaminade, USA

select R.id
from R,
(select R2.id, count(S.d) as ct
from R R2 left join S
on R2.id = S.id
group by R2.id) as X
where R.q = X.ct and R.id = X.id

(c) Count bug: version 3

mm
id id — id

q — «t countt= d

\

(f) Count bug: version 3

COLLECTION
HEAD: Q(id)
QUANTIFIER 3

L COLLECTION
HEAD: X(id, ct)
QUANTIFIER 3

GROUPING: r2.id
JOIN: left(r2, s)
AND A

PREDICATE: X.id = r2.id
PREDICATE: X.ct = count(s.d)
PREDICATE: r2.id = s.id

— AND A
PREDICATE: Q.id = r.id
PREDICATE: r.id = x.id

PREDICATE: r.q = x.ct
(i) ALT version 3

Figure 21: Section 3.2: Illustrations of the count bug: Left/middle/right columns correspond to queries (27)/(28)/(29), respectively.

[39], and corrected in [24]) However, on an input database with
R(9,0) and empty table S, the first query would return 9, whereas
the second would return an empty result. The correct decorrelation
happens with left join and the query shown in Fig. 21c.!? The re-
maining equations and figures in this section show those queries in
a pattern-equivalent ARC representations and various modalities.

{Q(id) | FreR[Q.id =r.id A3s€S, yp (27)
[r.id =s.id A r.q = count(s.d)]]}
{Q(id) | AreR, xe{X(id, ct) | (28)

3s€S, ys.iq[X.id = s.id A X.ct = count(s.d)]}
[Q.id=r.idAr.id=x.id ANr.q=x.ct]}

{Q(id) | IreR,xe{X(id, ct) | 3s€S,r2€R, yy, ia, left(rs, s) (29)
[X.id = ry.id A X.ct = count(s.d) A ry.id = s.id]}
[Q.id=r.idAr.id=x.id Nr.q =x.ct]}

4 QUESTIONS & ANSWERS

The flat relational model is obsolete. We need to think bigger
and move to an Entity-Relational Data model ERDs [18], relational
maps [19], databases as output [47], or at least a nested relational
model [10]. While we see merit in these directions, our goal is more
modest. Rather than replace or extend the relational model, our

12The example assumes R.id is a key. Otherwise, the correct translation requires an
additional deduplication.

goal is to complement current practices. SQL remains widely used,
and when inputs and outputs are in 1NF, nesting of intermediate
results adds no expressive power [42]. That said, nested relations
are now part of standards [10] and the development of an abstract
nested relational QL remains open.

SOL is bad for users. We need to create a new language, like
SaneQL [46], Rel [8], or a pipe/dataflow syntax [52]. That may or
may not be true, but our goal is orthogonal: rather than propose
yet another QL or extension to SQL, we suggest that the database
community instead creates a relational reference language (a rela-
tional meta language) that abstracts the relational patterns across
query languages (the relational core) away from a surface syntax.

Usability is not an immutable property of a language, it also
depends on the modality in which it is presented. Therefore, ARC
provides multiple modalities, including a machine-oriented data
structure called Abstract Language Tree (ALT). Because ALT ex-
poses bindings, scopes, and grouping structure directly, it supports
systematic traversal, rewriting, and validation, and can serve as
an intermediate representation for NL2SQL systems that translate
natural language into query intent and then render to SQL. Ulti-
mately, questions about relative usability need to be solved with
reproducible, task-oriented user studies [29, 55].

Is this then another Intermediate Representation? Our goal is
fundamentally different from intermediate representations (IRs) like
Semiring Dictionaries [50], Substrait [5], and relational maps [19],

CIDR’26, January 18-21, 2026, Chaminade, USA

which are typically closely tied to execution models, and designed
to support optimization. In contrast, we aim to move in the opposite
direction, toward a more abstract representation that decouples
from both data layout and syntax, focusing instead on the semantic
structure of relational queries.

Is this about logical expressiveness with aggregates? While
the addition of aggregate functions to logic has traditionally been
studied in terms of logical expressiveness [42], our goal is different.
Our focus is to capture relational patterns across various languages.
For that purpose we designed a reference language that supports ag-
gregate queries with the same relational patterns as SQL, including
multiple aggregates evaluated within a single grouping scope.

Are you reinventing Rel? No. We fully embrace the Rel philos-
ophy [1, 8]: everything is a relation, and some relations are defined
(or derived) rather than stored. Rel aims to unify data modeling,
querying, and application logic within a single relational language,
removing the boundary between a relational query sublanguage
(e.g., SQL) and the host application language (e.g., Java) so that a
powerful execution engine can optimize globally across the entire
program. Our aim is not to design such a language or an execution
engine. Instead, our goal is to support the ongoing discussion about
both user-facing and machine-facing language design trade-offs,
the different patterns that appear between relational languages,
and the recurring relational core expressible in all of them.

To this end, we provide an expressive abstract relational query
language that comes with a pattern-preserving diagrammatic
“modality”. This language is intended as a reference language for
analyzing current and future relational languages, whether they
adopt set or bag semantics (which we regard as a “convention”
orthogonal to a language itself).

Why are we still talking about new languages if everything
will be NL2SQL anyway? ARC/ALT can be used as an interme-
diate target: models generate a structurally constrained represen-
tation, which can be validated (well-scoped variables, grouping
legality, correlation shape) and then rendered to SQL. This enables
intent-based evaluation and comparison of generated queries at the
semantic-structure level rather than at the surface-syntax level.

Do you really expect people to write queries in a complicated
looking formalism like (29)? No. Our point is not to replace
SQL, Datalog, or any other surface syntax. The point is to make
query meaning sayable. We propose a universal relational refer-
ence language, paired with a shared vocabulary, that names the
primitive operations by which queries combine relations to answer
relational questions. Once those primitives are named, we can talk
about the same underlying patterns across very different languages
(declarative, procedural, or functional) without mistaking syntax
for substance. Thus, a reference language must be explicit, and
explicitness is often verbose: what production languages compress
into syntactic sugar, convention, or “obvious” readings must be
surfaced if we want a reliable reference point for comparison. That
surfacing is not busywork; it allows us to name distinctions that
our current vocabulary blurs. It lets us point at a query in Soufflé
and say “FOI aggregation.” It lets us look at Fig. 20 and see the
relational pattern for matrix multiplication. And it lets us diagnose
bugs by naming the difference between an aggregate used as a value
(assignment predicate) and an aggregate used as a test (comparison
predicate), as in the count bug (Fig. 21).

Gatterbauer & Sabale

And anyway, fewer people will write queries directly in the fu-
ture; more people will read them and try to make sense of them. In
that setting, usability is not just the language, it is about the modal-
ity in which it is presented. The same semantics can be rendered as
text, diagrams, or ALTs; different modalities serve different readers.
For humans, initial evidence suggests that a diagrammatic modality
like Fig. 21f can be read faster and more accurately than SQL [29, 55].
For machines (including LLMs), we believe that explicit, modular
structure with small, reusable vocabulary can improve precision
and recall.

5 NEXT STEPS

We view Abstract Relational Calculus (ARC) as a candidate semantic
backbone: a relational metalanguage for connecting the surface syn-
tax of queries to their core relational intent, across query languages,
modalities, and conventions.

On the systems side, we are building a SQL <> ARC translator
that can render ARC in all 3 modalities, extending our prototype im-
plementation [48] to cover additional aggregation-nesting patterns
and disjunctions. A spring 2026 seminar on relational language
design [6] focuses on the pattern expressiveness of relational lan-
guages and, in the process, produce further embeddings of other
languages in ARC.

On the theory side, we plan to prove coverage results: for a well-
defined fragment of SQL (including arbitrarily correlated queries
and aggregation patterns), every query has a pattern-preserving
ARC representation, and thus SQL < ARC round-tripping is
semantics-preserving (with appropriate conventions).

Finally, an open question is whether ARC/ALT can indeed serve
as an effective intermediate target for NL2SQL, together with
datasets and evaluation metrics that score intent via semantic struc-
ture proxies (scopes, joins, relational patterns) rather than SQL
syntax similarity. Also open are extensions to sorted lists (ORDER
BY), as well as extensions to the nested relational model [10].

6 ACKNOWLEDGEMENTS

We thank Molham Aref [8], Torsten Grust [33], Leonid Libkin [8, 37],
Wim Martens [8], Amir Shaikhha [50], and Dan Suciu [9], for taking
the time to discuss their respective papers with us, and Mahmoud
Abo Khamis for helping us understand Rel queries. Wolfgang was
supported in part by the National Science Foundation (NSF) under
award IIS-1762268, and Diandre by the NSF Graduate Research
Fellowship Program (GRFP).

REFERENCES

[1] 2025. Rel Cheatsheet. https://rel.relational.ai/rel/cheatsheet

[2] 2025. Soufflé. Aggregates and Generative Functors. https://souffle-lang.github.
io/aggregates

[3] 2025. SQL activities for ¢s3200 and ¢s7240 and ¢s7575. https://github.com/north
eastern-datalab/cs3200-activities/tree/master/sql (Copy and paste the respective
SQL commands into PostgreSQL to run the SQL queries shown in the paper).

[4] 2025. SQLGlot Abstract Syntax Tree (AST) Viewer. https://sqlglot-ast-
viewer.streamlit.app/

[5] 2025. Substrait: Cross-Language Serialization for Relational Algebra. https:
//substrait.io/

[6] 2026. cs7575: A Seminar On Relational Language Design (Spring 2026). https:
//northeastern-datalab.github.io/cs7575/sp26/

[7] Anastasia Ailamaki, Samuel Madden, Daniel Abadi, Gustavo Alonso, Sihem
Amer-Yahia, Magdalena Balazinska, Philip A. Bernstein, Peter A. Boncz, Michael J.
Cafarella, Surajit Chaudhuri, Susan B. Davidson, David J. DeWitt, Yanlei Diao,

https://rel.relational.ai/rel/cheatsheet
https://souffle-lang.github.io/aggregates
https://souffle-lang.github.io/aggregates
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
https://sqlglot-ast-viewer.streamlit.app/
https://sqlglot-ast-viewer.streamlit.app/
https://substrait.io/
https://substrait.io/
https://northeastern-datalab.github.io/cs7575/sp26/
https://northeastern-datalab.github.io/cs7575/sp26/

Database Research needs an Abstract Relational Query Language

[10

(1]
[12]
[13]

[14]

[15]
[16]

(17

[18

[19]

[21]

[22]

[23]
[24]

[25]

[26

[27

[28]

[29

Xin Luna Dong, Michael J. Franklin, Juliana Freire, Johannes Gehrke, Alon Y.
Halevy, Joseph M. Hellerstein, Mark D. Hill, Stratos Idreos, Yannis E. Ioannidis,
Christoph Koch, Donald Kossmann, Tim Kraska, Arun Kumar, Guoliang Li,
Volker Markl, Renée J. Miller, C. Mohan, Thomas Neumann, Beng Chin Ooi, Fatma
Ozcan, Aditya G. Parameswaran, Ippokratis Pandis, Jignesh M. Patel, Andrew
Pavlo, Danica Porobic, Viktor Sanca, Michael Stonebraker, Julia Stoyanovich, Dan
Suciu, Wang-Chiew Tan, Shivaram Venkataraman, Matei Zaharia, and Stanley B.
Zdonik. 2025. The Cambridge Report on Database Research. CoRR abs/2504.11259
(2025). doi:10.48550/ ARXIV.2504.11259

Molham Aref, Paolo Guagliardo, George Kastrinis, Leonid Libkin, Victor Marsault,
Wim Martens, Mary McGrath, Filip Murlak, Nathaniel Nystrom, Liat Peterfreund,
Allison Rogers, Cristina Sirangelo, Domagoj Vrgoc, David Zhao, and Abdul
Zreika. 2025. Rel: A Programming Language for Relational Data. In Companion
of SIGMOD/PODS 2025. 283-296. doi:10.1145/3722212.3724450

Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong. 1994.
Comprehension Syntax. SIGMOD Record 23, 1 (1994), 87-96. doi:10.1145/181550
181564

Michael J. Carey, Don Chamberlin, Almann Goo, Kian Win Ong, Yannis Papakon-
stantinou, Chris Suver, Sitaram Vemulapalli, and Till Westmann. 2024. SQL++:
We Can Finally Relax!. In ICDE. 5501-5510. doi:10.1109/ICDE60146.2024.00438
Edgar F. Codd. 1982. Relational Database: A Practical Foundation for Productivity.
CACM 25, 2 (1982), 109-117. doi:10.1145/358396.358400

Maria Colgan. 2023. Outerjoins in Oracle. https://blogs.oracle.com/optimizer/p
ost/outerjoins-in-oracle

Keith D. Cooper and Linda Torczon. 2022. Engineering a compiler (3 ed.). Morgan
Kaufmann. doi:10.1016/C2014-0-01395-0

Jonathan Danaparamita and Wolfgang Gatterbauer. 2011. QueryViz: helping
users understand SQL queries and their patterns. In EDBT. 558-561. doi:10.114
5/1951365.1951440 Project page: https://queryvis.com/.

Christopher J. Date. 2004. An introduction to database systems (8 ed.). Pearson-
/Addison Wesley Longman. https://dl.acm.org/doi/10.5555/861613

Michael M David. 1999. Advanced ANSI SQL data modeling and structure process-
ing. Artech House, Boston.

Jan Van den Bussche and Stijn Vansummeren. 2009. Translating SQL into the
relational algebra. Course notes, Hasselt University and Université Libre de
Bruxelles. https://cs.ulb.ac.be/public/_media/teaching/infoh417/sql2alg_eng.pdf
Amol Deshpande. 2025. Beyond Relations: A Case for Elevating to the Entity-
Relationship Abstraction, In CIDR. CoRR. doi:10.48550/ARXIV.2505.03536
Jens Dittrich. 2025. How to get Rid of SQL, Relational Algebra, the Relational
Model, ERM, and ORMs in a Single Paper - A Thought Experiment. CoRR (2025).
doi:10.48550/ARXIV.2504.12953

Ramez Elmasri and Sham Navathe. 2015. Fundamentals of database systems (7
ed.). Addison Wesley. https://dl.acm.org/doi/book/10.5555/2842853

Leonidas Fegaras and David Maier. 2000. Optimizing object queries using an
effective calculus. TODS 25, 4 (2000), 457-516. doi:10.1145/377674.37767
Avrilia Floratou, Fotis Psallidas, Fuheng Zhao, Shaleen Deep, Gunther Hagleither,
Wangda Tan, Joyce Cahoon, Rana Alotaibi, Jordan Henkel, Abhik Singla, Alex Van
Grootel, Brandon Chow, Kai Deng, Katherine Lin, Marcos Campos, K. Venkatesh
Emani, Vivek Pandit, Victor Shnayder, Wenjing Wang, and Carlo Curino. 2024.
NL2SQL is a solved problem... Not!. In CIDR. www.cidrdb.org. https://www.cidr
db.org/cidr2024/papers/p74-floratou.pdf

César Galindo-Legaria and Milind Joshi. 2001. Orthogonal optimization of
subqueries and aggregation. In SIGMOD. 571-581. doi:10.1145/375663.375748
Richard A. Ganski and Harry K. T. Wong. 1987. Optimization of Nested SQL
Queries Revisited. In SIGMOD. 23-33. doi:10.1145/38713.38723

Wolfgang Gatterbauer. 2011. Databases will Visualize Queries too. PVLDB
4, 12 (2011), 1498-1501. doi:10.14778/3402755.3402805 Recorded Talk:
https://www.youtube.com/watch?v=kVFnQRGAQIs. Slides: https://gatterbauer.
name/download/vldb2011_Database_Query_Visualization_presentation.pdf.
Project page: https://queryvis.com/.

Wolfgang Gatterbauer. 2023. A Tutorial on Visual Representations of Relational
Queries. PVLDB 16, 12 (2023), 3890-3893. doi:10.14778/3611540.3611578 Paper:
https://www.vldb.org/pvldb/vol16/p3890-gatterbauer.pdf. Tutorial page:
https://northeastern-datalab.github.io/visual-query-representation-tutorial/.
Slides: https://northeastern-datalab.github.io/visual-query-representation-tu
torial/slides/VLDB_2023-Visual _Representations_of Relational _Queries.pdf.
Wolfgang Gatterbauer. 2024. A Comprehensive Tutorial on over 100 Years of
Diagrammatic Representations of Logical Statements and Relational Queries. In
ICDE. IEEE. doi:10.1109/ICDE60146.2024.00407 Paper: https://arxiv.org/pdf/24
04.00007. Tutorial page: https://northeastern-datalab.github.io/diagrammatic-
representation-tutorial/. Slides: https://northeastern-datalab.github.io/diagra
mmatic-representation-tutorial/ ICDE_2024-Diagrammatic-Representations-
Tutorial.pdf.

Wolfgang Gatterbauer. 2024. A Principled Solution to the Disjunction Problem
of Diagrammatic Query Representations. SIGMOD 2026 (to appear). doi:10.485
50/ARXIV.2412.08583

Wolfgang Gatterbauer and Cody Dunne. 2024. On The Reasonable Effectiveness
of Relational Diagrams: Explaining Relational Query Patterns and the Pattern

[30

'w
=)

®
=

=
2

=
=

[42

[43

[44]

[46]

[47]

(48

[49

[50

[51]

[52

CIDR’26, January 18-21, 2026, Chaminade, USA

Expressiveness of Relational Languages. PACMMOD 2, 1, Article 61 (2024). doi:10
.1145/3639316 Recorded video: https://www.youtube.com/watch?v=IVRPD-
074Ro. Slides: https://gatterbauer.name/download/sigmod2024-Relational-
Diagrams-slides.pdf. Project page: https://relationaldiagrams.com/. Main
supplemental material folder on OSF: https://osf.io/q9g6u/. Online appendix
with all proofs, further illustrations, and study materials: https://arxiv.org/
pdf/2401.04758. Textbook analysis: https://osf.io/u7c4z. User study tutorial:
https://osf.io/mruzw. Stimuli-generating code: https://osf.io/kgx4y. The
stimuli: https://osf.io/d5qaj. Stimuli/schema index CSV: https://osf.io/u8bf9.
Stimuli/schema index JSON: https://osf.io/sn83j. Server code for hosting the
study: https://osf.io/suj4a. Collected data: https://osf.io/8vm42. Executed
user study analysis code: https://osf.io/f2xe3. Preregistered user study: https:
//osf.io/4zpsk/. Results from SIGMOD 2024 ARI (Availability & Reproducibility
Initiative): https://reproducibility.sigmod.org/reports.html.

Wolfgang Gatterbauer and Cody Dunne. 2025. Relational Diagrams and the
Pattern Expressiveness of Relational Languages. SIGMOD Record 54, 1 (2025),
80-88. doi:10.1145/3733620.3733637 Paper: https://sigmodrecord.org/?smd_proc
ess_download=1&download_id=14010. Project page: https://relationaldiagrams
.com/.

Wolfgang Gatterbauer, Cody Dunne, H. V. Jagadish, and Mirek Riedewald. 2022.
Principles of Query Visualization. IEEE Data Eng. Bull. 45, 3 (2022), 47-67.
http://sites.computer.org/debull/A22sept/p47.pdf

Thomas R G Green. 1990. Cognitive dimensions of notations. In People and
Computers V. Cambridge University Press, USA, 443-460. https://dl.acm.org/d
01/10.5555/92968.93015

Torsten Grust and Marc H. Scholl. 1999. How to Comprehend Queries Function-
ally. J. Intell. Inf. Syst. 12, 2-3 (1999), 191-218. do0i:10.1023/A:1008705026446
Torsten Grust and Amir Shaikhha (Eds.). 2025. The 19th International Symposium
on Database Programming Languages (DBPL). https://sites.google.com/view/db
pl2025/

Paolo Guagliardo, Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak,
Liat Peterfreund, and Cristina Sirangelo. 2025. Queries with External Predicates.
In ICDT (LIPIcs, Vol. 328). 22:1-22:20. doi:10.4230/LIPICS.ICDT.2025.22

David Harel. 1988. On Visual Formalisms. CACM 31, 5 (1988), 514-530.

Lauri Hella, Leonid Libkin, Juha Nurmonen, and Limsoon Wong. 2001. Logics
with aggregate operators. JACM 48, 4 (2001), 880-907. doi:10.1145/502090.502100
Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions
Asked Frequently. In PODS. 13-28. https://doi.org/10.1145/2902251.2902280
Won Kim. 1982. On Optimizing an SQL-like Nested Query. TODS 7, 3 (1982),
443-469. doi:10.1145/319732.319745

Anthony C. Klug. 1982. Equivalence of Relational Algebra and Relational Calculus
Query Languages Having Aggregate Functions. JACM 29, 3 (1982), 699-717.
doi:10.1145/322326.322332

Aristotelis Leventidis, Jiahui Zhang, Cody Dunne, Wolfgang Gatterbauer, H. V.
Jagadish, and Mirek Riedewald. 2020. QueryVis: Logic-based Diagrams help
Users Understand Complicated SQL Queries Faster. In SIGMOD. 2303-2318.
doi:10.1145/3318464.3389767

Leonid Libkin. 2003. Expressive power of SQL. Theor. Comput. Sci. 296, 3 (2003),
379-404. doi:10.1016/S0304-3975(02)00736-3

Leonid Libkin and Liat Peterfreund. 2023. SQL Nulls and Two-Valued Logic. In
PODS. 11-20. doi:10.1145/3584372.3588661

Guido Moerkotte. 2025. Building query compilers. https://pi3.informatik.uni-
mannheim.de/~moer/querycompiler.pdf

Daniel L. Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Trans. Software
Eng. 35, 6 (2009), 756-779. doi:10.1109/TSE.2009.67

Thomas Neumann and Viktor Leis. 2024. A Critique of Modern SQL and a
Proposal Towards a Simple and Expressive Query Language. In CIDR. https:
//www.cidrdb.org/cidr2024/papers/p48-neumann.pdf

Joris Nix and Jens Dittrich. 2025. Extending SQL to Return a Subdatabase.
PACMMOD 3, 3 (2025), 154:1-154:26. doi:10.1145/3725291

Diandre Miguel Sabale and Wolfgang Gatterbauer. 2025. PatternVis: A Tool for
Relational Pattern Visualization. In Companion of the SIGMOD 2025. 227-230.
doi:10.1145/3722212.3725128

Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. 2016. On fast
large-scale program analysis in Datalog. In Proceedings of the 25th International
Conference on Compiler Construction (CC). ACM, 196-206. doi:10.1145/2892208.
2892226

Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. 2022. Functional
collection programming with semi-ring dictionaries. PACMPL (OOPSLA1) 6
(2022), 1-33. doi:10.1145/3527333

Mary Shaw and Michael Hilton. 2025. You’re a Computer Science Major. Don’t
Panic. NYTimes (Nov. 11, 2025). https://www.nytimes.com/2025/11/12/opini
on/ai-coding-computer-science.html (Don’t just read the article, also read the
top-rated user comments).

Jeff Shute, Shannon Bales, Matthew Brown, Jean-Daniel Browne, Brandon
Dolphin, Romit Kudtarkar, Andrey Litvinov, Jingchi Ma, John D. Morcos,

https://doi.org/10.48550/ARXIV.2504.11259
https://doi.org/10.1145/3722212.3724450
https://doi.org/10.1145/181550.181564
https://doi.org/10.1145/181550.181564
https://doi.org/10.1109/ICDE60146.2024.00438
https://doi.org/10.1145/358396.358400
https://blogs.oracle.com/optimizer/post/outerjoins-in-oracle
https://blogs.oracle.com/optimizer/post/outerjoins-in-oracle
https://doi.org/10.1016/C2014-0-01395-0
https://doi.org/10.1145/1951365.1951440
https://doi.org/10.1145/1951365.1951440
https://queryvis.com/
https://dl.acm.org/doi/10.5555/861613
https://cs.ulb.ac.be/public/_media/teaching/infoh417/sql2alg_eng.pdf
https://doi.org/10.48550/ARXIV.2505.03536
https://doi.org/10.48550/ARXIV.2504.12953
https://dl.acm.org/doi/book/10.5555/2842853
https://doi.org/10.1145/377674.37767
https://www.cidrdb.org/cidr2024/papers/p74-floratou.pdf
https://www.cidrdb.org/cidr2024/papers/p74-floratou.pdf
https://doi.org/10.1145/375663.375748
https://doi.org/10.1145/38713.38723
https://doi.org/10.14778/3402755.3402805
https://www.youtube.com/watch?v=kVFnQRGAQls&list=PL_72ERGKF6DR4R0Cowx-LnnnqLXRf4ZjB
https://gatterbauer.name/download/vldb2011_Database_Query_Visualization_presentation.pdf
https://gatterbauer.name/download/vldb2011_Database_Query_Visualization_presentation.pdf
https://queryvis.com/
https://doi.org/10.14778/3611540.3611578
https://www.vldb.org/pvldb/vol16/p3890-gatterbauer.pdf
https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://northeastern-datalab.github.io/visual-query-representation-tutorial/slides/VLDB_2023-Visual_Representations_of_Relational_Queries.pdf
https://northeastern-datalab.github.io/visual-query-representation-tutorial/slides/VLDB_2023-Visual_Representations_of_Relational_Queries.pdf
https://doi.org/10.1109/ICDE60146.2024.00407
https://arxiv.org/pdf/2404.00007
https://arxiv.org/pdf/2404.00007
https://northeastern-datalab.github.io/diagrammatic-representation-tutorial/
https://northeastern-datalab.github.io/diagrammatic-representation-tutorial/
https://northeastern-datalab.github.io/diagrammatic-representation-tutorial/ICDE_2024-Diagrammatic-Representations-Tutorial.pdf
https://northeastern-datalab.github.io/diagrammatic-representation-tutorial/ICDE_2024-Diagrammatic-Representations-Tutorial.pdf
https://northeastern-datalab.github.io/diagrammatic-representation-tutorial/ICDE_2024-Diagrammatic-Representations-Tutorial.pdf
https://doi.org/10.48550/ARXIV.2412.08583
https://doi.org/10.48550/ARXIV.2412.08583
https://doi.org/10.1145/3639316
https://doi.org/10.1145/3639316
https://www.youtube.com/watch?v=IVRPD-074Ro&list=PL_72ERGKF6DQ7dKQoBZ90WVR1ndDklOH1
https://www.youtube.com/watch?v=IVRPD-074Ro&list=PL_72ERGKF6DQ7dKQoBZ90WVR1ndDklOH1
https://gatterbauer.name/download/sigmod2024-Relational-Diagrams-slides.pdf
https://gatterbauer.name/download/sigmod2024-Relational-Diagrams-slides.pdf
https://relationaldiagrams.com/
https://osf.io/q9g6u/
https://arxiv.org/pdf/2401.04758
https://arxiv.org/pdf/2401.04758
https://osf.io/u7c4z
https://osf.io/mruzw
https://osf.io/kgx4y
https://osf.io/d5qaj
https://osf.io/u8bf9
https://osf.io/sn83j
https://osf.io/suj4a
https://osf.io/8vm42
https://osf.io/f2xe3
https://osf.io/4zpsk/
https://osf.io/4zpsk/
https://reproducibility.sigmod.org/reports.html
https://doi.org/10.1145/3733620.3733637
https://sigmodrecord.org/?smd_process_download=1&download_id=14010
https://sigmodrecord.org/?smd_process_download=1&download_id=14010
https://relationaldiagrams.com/
https://relationaldiagrams.com/
http://sites.computer.org/debull/A22sept/p47.pdf
https://dl.acm.org/doi/10.5555/92968.93015
https://dl.acm.org/doi/10.5555/92968.93015
https://doi.org/10.1023/A:1008705026446
https://sites.google.com/view/dbpl2025/
https://sites.google.com/view/dbpl2025/
https://doi.org/10.4230/LIPICS.ICDT.2025.22
https://doi.org/10.1145/502090.502100
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/319732.319745
https://doi.org/10.1145/322326.322332
https://doi.org/10.1145/3318464.3389767
https://doi.org/10.1016/S0304-3975(02)00736-3
https://doi.org/10.1145/3584372.3588661
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://doi.org/10.1109/TSE.2009.67
https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf
https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf
https://doi.org/10.1145/3725291
https://doi.org/10.1145/3722212.3725128
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/3527333
https://www.nytimes.com/2025/11/12/opinion/ai-coding-computer-science.html
https://www.nytimes.com/2025/11/12/opinion/ai-coding-computer-science.html

CIDR’26, January 18-21, 2026, Chaminade, USA

[53]

[54]

[55]

[56]

Michael Shen, David Wilhite, Xi Wu, and Lulan Yu. 2024. SQL has prob-
lems. We can fix them: Pipe syntax in SQL. PVLDB 17, 12 (2024), 4051-4063.
doi:10.14778/3685800.3685826

Philip W. Trinder. 1991. Comprehensions, a Query Notation for DBPLs. In DBPL3.
55-68. https://dl.acm.org/doi/10.5555/135260.135271

Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2021. Beyond
Equi-joins: Ranking, Enumeration and Factorization. PVLDB 14, 11 (2021), 2599—
2612. http://www.vldb.org/pvldb/vol14/p2599-tziavelis.pdf

Giorgio Vinciguerra, Guang Yang, Wolfgang Gatterbauer, and Cody Dunne.
2025. Reproducibility Report for ACM SIGMOD 2024 Paper: *On The Reasonable
Effectiveness of Relational Diagrams’. In Reproducibility Reports of SIGMOD 2024.
60-63. doi:10.1145/3687998.3717044

Taroslav Zeigerman. 2023. Semantic Understanding of SQL. https://www.tobiko
data.com/blog/semantic-understanding-of-sql Blog post (May 10, 2023).

Gatterbauer & Sabale

https://doi.org/10.14778/3685800.3685826
https://dl.acm.org/doi/10.5555/135260.135271
http://www.vldb.org/pvldb/vol14/p2599-tziavelis.pdf
https://doi.org/10.1145/3687998.3717044
https://www.tobikodata.com/blog/semantic-understanding-of-sql
https://www.tobikodata.com/blog/semantic-understanding-of-sql

	Abstract
	1 Introduction
	2 Abstract Relational Calculus (ARC)
	2.1 Starting with TRC
	2.2 Language Modalities[modality]
	2.3 Interpreting TRC as set comprehension
	2.4 Composability through orthogonal nesting
	2.5 Grouping and aggregates in set semantics
	2.6 Language Conventions[convention]
	2.7 Sets or bags? Not an issue for ARC but a matter of convention
	2.8 Negation, Disjunction, and Union
	2.9 Recursion
	2.10 Null values and (NOT) IN predicates
	2.11 Left and full outer joins
	2.12 Representing head aggregates
	2.13 Defined relations (incl. abstract relations)

	3 Two examples
	3.1 Matrix multiplication
	3.2 An illustration of the count bug

	4 Questions & Answers
	5 Next steps
	6 Acknowledgements
	References

