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ABSTRACT

Asynchronous primary-backup database replication is popular be-
cause it strikes a desirable balance between write latency and
durability. Unfortunately, it has significant downsides. In parti-
tioned databases, each partition is typically replicated indepen-
dently, which means that data loss during failover can leave the
database in an undefined state that is hard for developers to reason
about. In addition, replication lag can grow over time, expose users
to stale data and create durability issues. Finally, time to recov-
ery and performance after failover can suffer if backup partitions
progress unevenly.

Rosé is a novel replication scheme to address the limitations of
asynchronous primary backup replication in partitioned databases,
by striking a balance between full synchronicity and asynchronicity.
First, databases integrate their existing snapshotting mechanisms
(e.g., real-time or epochs) with asynchronous replication to provide
monotonic-prefix consistency semantics at the backup. Second, in
order to bound replication lag, Rosé proposes push-based replica-
tion that can track the lag and apply backpressure at the primary,
in a way that maintains high availability. Third, Rosé ensures fast
recovery and full performance after failover by separating the repli-
cation of writes from their application to the backup partition’s
key-value store. We integrate Rosé with Chablis, a geo-distributed,
multi-versioned transactional key-value store to preserve the bene-
fit of fast single datacenter (DC) transactions while ensuring multi-
DC durability.

1 INTRODUCTION

Replication is a ubiquitous technique used by database systems
to improve durability and availability, as well as read latency by
creating copies of the data geographically closer to the users. Asyn-
chronous primary-backup replication is a widely used form of repli-
cation [3, 4, 8, 10, 13, 16] in which a designated primary replica-set
executes and commits all transactions locally, and asynchronously
sends the transaction writes to a set of backup replicas which then
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apply the writes to independently reconstruct the primary’s state.
Since writes need only be acknowledged by the primary (which is
typically contained within a single zone or region), this technique
achieves excellent write latency, but is prone to losing recent data
if the primary replica fails (e.g. due to a datacenter or region-wide
outage). The wide adoption of this technique in practice shows that
many users and applications find that trade-off acceptable.

A desirable property in primary-backup replicated systems is
monotonic prefix consistency [8], where each backup replica exposes
a progressing sequence of the primary’s recent states. This ensures
that if failover has to happen, the backup replica that is promoted
to become the new primary is going to be in a consistent state. In
other words, while durability can be compromised during fail-over,
all the other ACID properties would still be maintained, helping
preserve application invariants. It also means the backups are able
to serve consistent (albeit potentially stale) snapshots to read-only
transactions.

Monotonic prefix consistency is relatively straightforward to
provide in unpartitioned database systems with a single log. How-
ever, in partitioned systems each partition has its own log and is
typically replicated independently. Thus, even if the replication of
each partition preserves monotonic prefix consistency, the overall
state of the backup can be inconsistent and undefined. Consider
the following example to illustrate the issue: Suppose a committed
transaction T wrote a key Kj in partition P; and a key K3 in parti-
tion Ps. It is possible, due to differences in replication pace, that the
write for Kj is replicated to the backup partition P; while the write
for K3 is not yet replicated to the backup partition P,. In this case,
an operation executing at the backup that reads K; and Kz would
only observe a part of T, breaking atomicity.

We know from experience and from speaking with many de-
veloper teams that dealing with fail-over during disaster recovery
in such cases often requires performing complicated consistency
checks and repairs on the database. Since the occurrence of such dis-
asters is rare, regularly performing drills to exercise and validate the
code and recovery processes is usually required. Fortunately, many
modern systems that support global consistency across partitions
also offer the ability to restore a cluster to a consistent point-in-time
snapshot [2, 15] which simplifies this process. However, the pro-
cess remains time consuming, and the systems offer no guarantees



on how far behind the consistent point-in-time snapshot on the
asynchronously replicated backup can be. In addition, failover of-
ten causes degraded performance on the newly promoted primary,
due to the need to clean up data newer than the latest replicated
snapshot.

Our work in this paper addresses the limitation of asynchro-
nous primary backup replication in partitioned databases by de-
signing a novel replication scheme that preserves the desirable
properties of monotonic prefix consistency, while enabling a flexi-
ble, fast and efficient fail-over process, and bounds the replication
lag to the backup as long as it is up. First, we observe that many
distributed database systems already have support for globally con-
sistent, serializable snapshot reads. Since these snapshot reads can
span multiple partitions, the system must already have a notion
of a global snapshot, which can be based on real time [5], hybrid
logical clocks (HLC) [2, 15] or epochs [6, 7]. These snapshots can
serve as a natural extension of monotonic prefix consistency to
partitioned databases: the (externally visible) state of the backup
should always be a globally consistent snapshot of the primary. Sec-
ond, we propose a backpressure-based mechanism that effectively
caps replication lag while maintaining high availability. Third, we
tackle the core problem of degradation after failover by separating
the replication of the write-ahead log (WAL) entries from their
application in the partition’s key-value store. WAL entries are repli-
cated liberally but only applied in a coordinated fashion, up until
the latest fully-replicated snapshot. Finally, we integrate Rosé with
Chablis and evaluate several aspects of the protocol.

2 BACKGROUND AND RELATED WORK

In this section, we first provide a brief overview of replication
techniques (§2.1) and how Rosé fits in this landscape. Then, we
provide some minimal background of Chablis [6], in order to later
describe its integration with Rosé (§2.2).

2.1 Replication

Distributed databases seek to support high-availability and durabil-
ity, such that when some servers fail, data is not lost and the rest
of the servers can continue providing the database functionality.
These objectives are commonly satisfied using replication.

Consensus-based replication. Consensus protocols such as
Paxos [9] or Raft [12] are commonly used in practice to replicate the
database, such as in systems like Spanner [5], CockroachDB [15]
and Yugabyte [2]. This approach is quorum-based, often using
majority-based quorums in which data has to be replicated to a
majority of replicas to be committed. With n replicas, the system
achieves availability by tolerating up to n/2 - 1 replicas failing.
However, it requires a relatively high number of replicas to achieve
durability: to tolerate losing f replicas without permanent data loss,
n must be 2f + 1.

Primary-backup replication. In primary-backup replication,
areplica is designated the primary and is responsible for executing
all client transactions. After all operations in a transaction execute,
the transaction commits by writing to the primary’s database and
flushing a log of its changes to stable storage [8]. The primary then
sends a copy of its log to (one or more) backup replicas, which
apply it to their copy of the database to reach the same state as the

primary (i.e. a form of state machine replication [14]). The log re-
flects a total order of the writes applied by the primary, determined
by the primary’s transaction commit order and the order of each
transaction’s operations. Primary-backup can be synchronous, if
the primary waits for the replication to complete on the backup
before acknowledging a transaction, or asynchronous otherwise.

Monotonic prefix consistency. In asynchronous primary-backup
replication, it is inevitable that the backup’s log lags behind the
primary [8]. Helt et. al. [8] define monotonic prefix consistency
of the backup’s log relative to the primary’s log of transactions as
the following two invariants: First, the backup’s state must reflect
the changes of a contiguous prefix of transactions. Second, the
sequence of states exposed to read-only transactions must reflect
prefixes of monotonically increasing length.

Intuitively, this means that the backup should expose a progress-
ing sequence of the primary’s recent states. Many systems have
this behavior [1, 3, 11, 17, 18], which has the desirable property
that it maintains application invariants.

2.2 Chablis

Chablis is a scalable, geo-distributed, multi-versioned transactional
key-value store that supports low-latency read-write transactions
within a region and globally consistent, strictly-serializable, lock-
free snapshot reads. Its architecture is shown in Figure 1 and con-
sists of the following components:

e RangeServer: Each RangeServer is responsible for manag-
ing specific ranges or partitions of the key space and imple-
ments both 2-phase-locking and 2-phase-commit protocols
while remaining mostly stateless. The RangeServer persists
transaction data in a write-ahead log (offered by a separate
WAL Service) through prepare, commit, and abort operations.
In addition, it asynchronously applies these operations to a
Key-Value Service, which fast read access, and occasionally
trims the WAL. The WAL Service and Key-Value Service can
either operate as separate services or be co-located on the
same node depending on the deployment configuration.

e Warden: The Warden component is responsible for assign-
ing ranges to individual RangeServers and continuously
monitors the health of RangeServers through a heartbeat
mechanism to ensure system reliability and proper load dis-
tribution.
Epochs: Chablis achieves transaction linearizability through
the use of epochs, which provide a global ordering mecha-
nism between transactions such that transactions in epoch
e; are guaranteed to have occurred before transactions in
epoch ej when e; < e;. While this epoch-based approach
enables Chablis to deliver superior performance and strict se-
rializability without requiring specialized hardware such as
atomic clocks, it also means that global ordering is only well-
defined at epoch boundaries. Transactions read the current
epoch from regional epoch publishers during the 2-phase
commit process, while a global epoch service periodically
advances the epoch across all regions, thereby enabling fast
regional writes and global strictly-serializable lock-free snap-
shot reads.
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Figure 1: Chablis architecture.

3 CHALLENGES

Rosé addresses the following challenges arising from the problem
of asynchronous replication in partitioned databases:

¢ Bounding Replication lag: Asynchronous replication ac-
knowledges writes before remote replicas persist them, so
lag is unavoidable; when that lag grows too large it exposes
users to stale data and undermines failover.

e Minimizing Time to Recovery: In synchronous schemes,
replicas have complete and identical logs, enabling near-
instant failover. With asynchronous replication, partitions
may advance at different rates, which leads to accumulation
of unusable data on failover. For example, if partitions p; and
p2 have replicated changes up to times t; and ¢, with t; < o,
then a failover can rely only on state up to t; and must
discard all updates with ¢ > t;. Thus, uneven progress can
inflate downtime and/or decrease performance after failover.

4 ROSE PROTOCOL

Rosé is an asynchronous primary-backup replication protocol for
geo-distributed partitioned databases, shown in figure 2. It provides
strong consistency guarantees (i.e. monotonic prefix consistency) at
the secondary by integrating with a database’s existing notions of
time (§4.1). As with any asynchronous protocol, Rosé trades dura-
bility for increased performance during normal operation. How-
ever, Rosé takes a principled approach (§4.2 to cap replication lag,

through a queue-based backpressure mechanism. This way, Rosé
limits the maximum amount of data that could be lost in the event
of a regional outage. Finally, Rosé tackles the problem of quick and
performant failover by applying replicated entries in a coordinated
fashion across the backup cluster, ensuring that all backup replicas
make equal progress and don’t accumulate potentially invalid data

(§4.3).

4.1 Maintaining Monotonic Prefix Consistency

Many distributed database systems already provide globally con-
sistent, serializable snapshot reads as a core feature. To enable
cross-partition snapshot queries, these systems maintain a coherent
notion of global snapshots, implemented through various ordering
mechanisms including real-time ordering [5], hybrid logical clocks
(HLC) [2, 15], or epoch-based approaches [6, 7]. This existing global
snapshot infrastructure presents a natural foundation for extending
monotonic prefix consistency to partitioned database environments:
backup replicas should maintain externally visible state that corre-
sponds to globally consistent snapshots of the primary system at
all times. Since we are integrating Rosé with Chablis, we will use
epochs as our measure of time. However, any of the aforementioned
methods would work as well.

Based on this observation, we can construct a minimal asyn-
chronous replication protocol that provides monotonic prefix con-
sistency. Each primary partition sends transaction write-sets, in
increasing order of epochs (WAL order), to the corresponding
backup partition. Correspondingly, each backup partition receives
committed transactions and applies them to reconstruct the pri-
mary’s state. In the meantime, the component responsible for cluster
management at the backup region tracks the latest fully applied
epoch e; at each partition P;, which can be piggybacked on existing
health checks. The most recent snapshot that can serve reads at
the backup corresponds to the minimum epoch of all partitions,
€snapshor = min(e;). As the snapshot epoch es4psn0r advances
monotonically, the backup provides monotonic prefix consistency
for reads.

4.2 Bounding the Replication Lag

4.2.1 Rosé’s Mechanism. Replication lag, defined as the number of
transactions that have not yet been replicated from the primary to
the backup, represents a fundamental challenge in asynchronous
replication systems. For example, for a partition P; where the pri-
mary operates at epoch eprimary,; and the backup at epoch epgciup, i»
the replication lag is replication_lagi = eprimary,i — €backup,i-
Excessive replication lag has proven to be a significant opera-
tional concern for asynchronous databases, causing both oper-
ational burden and system outages. In partitioned database en-
vironments, replication lag becomes particularly problematic be-
cause backup data remains useful only up to the snapshot epoch,
as defined in §4.1. The effective replication lag across the sys-
tem is thus ef fective_replication_lag = min(replication_lag;) =
min(eprimary,i = €packup,i)- This formulation reveals a critical vul-
nerability: during failover scenarios, partitions that have progressed
beyond the snapshot epoch contain data that becomes effectively
useless and must be cleaned up before promotion to primary status.
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Figure 2: Rosé overview.

Consequently, the progress of all partitions becomes interdepen-
dent, as a single stalling partition can compromise the durability
guarantees for the entire database.

Rosé proposes a backpressure-based mechanism that effectively
caps replication lag in distributed partitioned databases, while main-
taining availability. Rosé maintains a bounded queue of size L for
each partition to track outstanding transactions, employing push-
based replication where the primary actively propagates changes
to backups while monitoring replication progress across all par-
titions. When any partition’s queue reaches capacity, writes are
throttled for that specific partition. This maintains a very desirable
property: straggler partitions only affect themselves but at the same
time avoid accumulating an ever-increasing backlog that keeps the
backup constantly behind. Furthermore, this gives Rosé an effective
way to detect straggler partitions so it can take actions to mitigate
them such as migrating them to faster or less loaded servers. We
will show that Rosé provides enhanced availability during normal
operation and at worst similar to synchronous availability under
network outages.

4.2.2  Availability Proof. We will show that Rosé’s availability is no
worse than synchronous replication. Assume a distributed database
with partitions Py, ...Py, queue sizes By, ..., B, and queue limit L un-
der a primary-backup replication setup and transactions Ty, Tz, ..., T,
issued in that order. First, we’ll show that in the case of a single
partition, the accepted transactions of Rosé are a strict superset
of the accepted transactions for synchronous replication. Initially,
any transaction accepted by synchronous replication must also be
accepted by Rosé without accumulating backlog. Transactions that
aren’t accepted by the synchronous scheme are accepted by Rosé
initially, while B < L. Once B = L and a new transaction appears,
there are two possible outcomes. If the transaction is rejected by
the synchronous scheme, it is also rejected by Rosé. If it is accepted,
it means the link to the secondary is up and a slot can be cleared
in the queue, so that there is space for the new transaction. We
account for this case by waiting for some timeout 6 when the queue
is full. Similarly, the same point holds for multiple partitions.

A key issue in this scheme is that replication lag can grow ar-
bitrarily large if a partition is completely down. For example, a
partition may accept a write at e; and then go down for an arbi-
trarily large amount of time, preventing the snapshot epoch at the
backup from advancing. Luckily, partitions are already replicated
and highly available inside the region, so the odds of a partition
being completely down for a long time is extremely unlikely. More
specifically, assuming a standard replication factor R = 3 and con-
sidering that we care about read availability for replication,

Pr[single partition unavailable] = Pr[all replicas down]
= Pr[replica node down|®
Assuming a 99.9% availability for a single node, any single replica
will be available 99.9999999% of the time. Thus, the probability of a
persistently stalled partition is extremely low.

4.2.3 Important Details. A robust and performant implementation
is crucial to our backpressure design, so that writes aren’t throttled
just because the backup can’t keep up. For this reason, we match the
parallelism of the primary and backup using the C5 algorithm [8].
In addition, L is an important hyperparameter to tune, which will
be different for each user. It should be high enough to utilize the full
network bandwidth and also absorb normal load and temporary
spikes, only triggering in genuine edge cases. At the same time, it
should match the user’s desired durability guarantees. Finally, in
the event of a prolonged outage or loss of the backup region, we
assume that an administrator or an external system monitoring
uptime of the respective cloud will disengage the backpressure
mechanism to restore availability if needed.

4.3 Minimizing Time to Recovery

As elaborated in §4.1, data at the secondary is only useful up to the
snapshot epoch, which is the minimum replicated epoch across all
partitions. This means that in the event of an outage, the backup
cluster needs to restore every partition to that minimum epoch
before it can be promoted to primary. So while a synchronously
replicated backup would be immediately eligible for promotion,



failover in asynchronously replicated partitioned databases presents
this significant challenge. A straightforward way of restoring the
backup would be to delete all records that were written after the
desired snapshot time, albeit at the cost of inflating time to recov-
ery. To work around this limitation, databases like Yugabyte have
designed complex recovery schemes that can start serving requests
immediately, while deferring clean up to background operations.
However, these schemes still suffer from degraded performance
after failover, as we will explain below.

4.3.1  Yugabyte: An example from industry. Yugabyte is a distributed
partitioned database that uses a modified version of RocksDB to
store its data on each node. It supports consistent asynchronous
primary-backup replication through xCluster replication, which is
pull-based (i.e. the replica cluster pulls data from the primary clus-
ter), unlike Rosé. It supports instant failover (at the coarse grained
scope of the entire cluster) by deeply integrating with its underly-
ing MVCC storage engine, RocksDB. RocksDB uses an LSM tree
to organize key-timestamp-value data, as shown in figure 3. The
LSM tree consists of many levels and each level contains several
SST files, while each SST file contains a metadata block and several
data blocks containing key-timestamp-value tuples. To support fast
failover, Yugabyte extends RocksDB by storing an extra piece of
information in each SST file’s metadata block: the maximum times-
tamp contained in the file, shown as max_ts. To rewind the partition
to an earlier timestamp, Yugabyte simply reads each file’s metadata
block to check if the maximum timestamp exceeds the desired snap-
shot timestamp. If it doesn’t, the SST file is left as is. Otherwise, it
records the desired snapshot timestamp in the file’s metadata block,
shown as keep_ts. The partition is now ready to serve requests.
Writes work as usual, reads need to do extra work and potentially
parse invalid entries, while compaction slowly cleans up the unused
data. As we will see in the evaluation, even this elaborate scheme
can result in degraded performance after failover.

4.3.2  Rosé Coordinated Apply. Rosé takes a different approach to
address the fundamental issue of accumulating unusable data in
asynchronous replication, by separating the replication of data from
its application in the underlying MVCC store. We observe that most
databases persist data in a similar fashion: by first making it durable
in a fast write-ahead log (WAL) and periodically applying it to a
structured key-value store for fast reads. Databases currently apply
replicated records as soon as they arrive at the backup, incurring
an expensive bulk-delete operation on failover or degrading their
read performance. Instead, we notice that the WAL has a desirable
property for this scenario. It keeps data in insertion order, thus
enabling fast trimming of the log to a past offset.

Based on this observation, we propose coordinating the appli-
cation of the data from the WAL to the key-value store, instead
of doing it blindly. More specifically, the backup constantly keeps
track of the current minimum replicated epoch across all partitions.
Then, it notifies partitions to apply their WAL up to that epoch and
no more. This way, on failover Rosé only needs to trim the WAL in
order to clean up data, which is a very fast operation. At the same
time, it preserves the full performance of the backup cluster after a
failover.

A concern with this proposed approach is how it would affect
replication under normal operating conditions. First of all, is our
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Figure 3: Yugabyte recovery of a single partition at t=3.

scheme optimizing for the worst case by sacrificing the usual case?
For example, a single straggler secondary partition spells doom
for this scheme, as it makes log application fall behind until it’s
resolved. Luckily, Rosé’s mechanism for bounding replication lag
mitigates these cases. If a partition straggles, writes to it will be
throttled, allowing it to catch up. Second, will our scheme intro-
duce spikes by advancing log application at epoch boundaries?
Let’s think about it through a two-partition example. Imagine we
have two partitions, one hot, with high write bandwidth wy,,; and

one cold, with low write bandwidth w_,;4. The hot partition will

Whor*epoch_duration
network_bw

Weold*epoch_duration
network_bw

onds. Thus, there will be "dead-time" for each partition, where log

application could have started, but didn’t, causing spikes at epoch
boundaries. For the each partition i, this dead time is equal to:

replicate in replication_timep,; = Ry, =

seconds, while the cold will take RT,,;; =

dead_time; = DT; = max(RT) — RT;

_ (wmax — w;) epoch_duration

network_bw

Minimizing this dead time is the key to minimizing the spikes.
As we can see, epoch duration plays a big role. If the epochs are big,
the dead time is big. In Rosé, epochs are configured to be a couple
of milliseconds long, which should be sufficient to minimize spikes
in the presence of hot partitions. In the absence of hot partitions,
all the dead times should be roughly zero.

Finally, it should be noted that the snapshot epoch will advance
the same in both scenarios. We illustrate this point in figure 4.
While the second partition starts applying its log later under Rosé,
it should still finish before the first partition, which has a larger
replication time and thus a larger log.
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5 EVALUATION

We evaluate Rosé’s recovery performance and ability to cap the
replication lag. To do so, we integrate Rosé into Chablis [6], a geo-
replicated, transactional key-value store.

In our evaluation, we aim to answer the following questions:

e Q1: Does Rosé help cap replication lag in asynchronous
replication?

e Q2: Does Rosé improve performance after failover over ex-
isting techniques?

5.1 Setup

We simulate a multi-node setup, along with network faults, on a
single Cloudlab c6525-25g machine. For experiments with Yugabyte,
we used version 2.25.2.0-b359 and their manual instructions for
failover [19].

5.2 Q1: Capping the replication lag

To show how backpressure allows Rosé to effectively cap repli-
cation lag, we track replication lag over time for a partition with
and without backpressure enabled. As shown in figure 5, backpres-
sure effectively caps the replication lag and allows the partition to
keep up, at the cost of reduced performance. However, only the
overloaded partition is affected.

5.3 Q2: Recovery with Rosé

To evaluate recovery, we run Chablis and Yugabyte in primary-
backup configurations with two nodes in each region. We run
uniform read-write transactions in the primary and then fail a link
to one of the backup nodes. Yugabyte continues to apply writes in
the reachable node, while in Chablis, coordinated apply prevents
that. In figure 6(a), we see coordinated apply in action. Up until
time step 50, both backup nodes are reachable. At time step 50, one
of the backup nodes becomes unreachable. Thanks to coordinated
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Figure 5: Rosé backpressure to cap replication lag.

apply, the remaining node will not apply any changes after the last
replicated epoch of the unavailable node.

Both databases can failover instantly, in under two seconds, but
only Rosé can provide the same performance after failover, since
its key-value store is clean. In contrast, Yugabyte’s performance for
reads is degraded, with 22% less throughput and 15% higher P99
latency, as shown in figure 6(b).
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(a) Coordinated apply in action.

Performance After Failover | Yugabyte | Rosé
Throughput Slowdown 22% 0%
P99 Latency Inflation 15% 0%

(b) Performance comparison after failover.

Figure 6: Coordinated apply and its impact on failover.

We do not compare absolute performance numbers of Rosé and
Yugabyte, because that comparison would not be apples-to-apples,
since Yugabyte is a production-grade system with full SQL support



and many other features while Rosé is a key-value store proto-
type. Nonetheless, the relative performance of both systems in this
experiment is instructive.

5.4 Conclusion

We presented Rosé, a novel replication protocol that addresses the
typical shortcomings of asynchronous replication, while keeping
many of the benefits. Thanks to Rosé, databases can provide low-
latency regional writes while maintaining high durability and quick
recovery in the face of an outage.
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